
ENT-AN1163-4.1 Application Note
Linux Customizations

VPPD-04449. 1.0 6/17

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

© 2017 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi
Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for
aerospace & defense, communications, data center and industrial markets. Products include high-performance and
radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products;
timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing
devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and
scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees
globally. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
http://www.microsemi.com
http://www.microsemi.com
http://www.microsemi.com

ENT-AN1163-4.1 Application Note Revision 1.0 iii

Contents

1 Revision History . 1
1.1 Revision 1.0 . 1

2 Linux Customizations . 2
2.1 Facilities . 2

2.1.1 Modular Firmware Images . 2
2.1.2 ServiceD . 5
2.1.3 JSON-IPC . 6
2.1.4 Boot-time Configuration . 8

2.2 Use Cases . 8
2.2.1 Custom Web . 8
2.2.2 Quagga Integration . 11
2.2.3 JSON CLI-Client . 13
2.2.4 Custom Default Configuration . 15

ENT-AN1163-4.1 Application Note Revision 1.0 iv

Figures

Figure 1 Stage2 TLVs Binary Layout . 4
Figure 2 ROOTFS TLV Header . 4
Figure 3 JSON-IPC Architecture . 7
Figure 4 IPC Message Format . 7
Figure 5 Custom Web: Port Status . 11

ENT-AN1163-4.1 Application Note Revision 1.0 1

Tables

Table 1 Fields in ServiceD Configuration File . 6

Revision History

ENT-AN1163-4.1 Application Note Revision 1.0 1

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the most current publication.

1.1 Revision 1.0
Revision 1.0 was published in June 2017. It was the first publication of this document.

Linux Customizations

ENT-AN1163-4.1 Application Note Revision 1.0 2

2 Linux Customizations

This document provides a collection of options to customize the firmware images managed by the
WebStaX software application used in the Microsemi switch products. All facilities presented here do not
require source code access for the software, but do require a board support package (BSP), and can be
used to customize without recompiling the WebStaX image. This document mostly focuses on simple
customization facilities. For more advanced customization, knowledge of embedded Linux and C
programming is required.

The document presents a set of customization facilities that can be used and combined and a few use
cases with examples of how the different facilities can be used.

2.1 Facilities
This section includes a number of different facilities that can be used to customize a firmware image for a
product in the WebStaX family.

2.1.1 Modular Firmware Images
Modular Firmware Images (MFI) is a new image type that is being introduced with the Linux-based
version of the WebStaX family. The modular firmware architecture is designed to be flexible and allow the
user to replace and append various components without the need to recompile/rebuild all the
components.

The MFI file consists of two parts: stage1 and stage2. Stage1 must include a kernel and a initrd section.
Stage2 may include a number of root file system elements. Stage1 must be accessible by the boot-
loader. Stage2, on the other hand, is loaded by the initrd application after the kernel has booted the
system. This may be used to locate the root filesystem (which is the majority of the image file) in the
NAND flash not accessible by the boot-loader.

Stage2 of the firmware image includes parts that are being used to build the final root file system. Each
root file system element is just xz compressed tarball file with a small header. The initrd application in the
stage1 section will iterate through the root file system elements, and extract each of the associated
tarballs into a ram file system. The file system entries will be processed in the order they are located in
the file, meaning that a later element can overwrite files in an earlier element.

The script called mfi.rb is provided as part of the BSP, and it should be used to build, alter, and/or
inspect the MFI files. Start by validating that the mfi.rb is installed and able to run.

The mfi.rb script must be included in the search path. This script is distributed as part of the BSP, and
is installed at: /opt/mscc/mscc-brsdk-mips-vXX.YY/stage1/x86_64-
linux/usr/bin/mfi.rb where XX.YY represents the version of the BSP. This section will assume it
to be part of the search path.

2.1.1.1 Firmware File Format
This section documents the binary file format used by MFI. This is provided as background information;
most people should be able to just use the mfi.rb tool to inspect, read, and write mfi files.

$ mfi.rb --help
Usage: mfi [global-options] [<command> [command-specific-options]]

-i, --input <file> Firmware image to read. New image is created if not specified.
 -o, --output <file> Firmware image to write.
 -k, --public-key <file> Use public key for validation.
 -v, --verbose <lvl> Set verbose level.
 -d, --dump Dump the inventory of TLV(s) in the firmware image.
 -V, --version Print the version of this program and exit.

Commands:
 help Prints this help message.
 stage1 Inspect or alter the stage1 area of the firmware image.
 bootloader Inspect or alter any bootloader tlv in the firmware image.
 rootfs-squash Inspect or alter the rootfs tlv(s) in the firmware image (assuming squashfs).

Linux Customizations

ENT-AN1163-4.1 Application Note Revision 1.0 3

MFI uses a binary file format. The file starts with the stage1 part, the optional stage2 follows immediately
after stage1.

Both stage1 and stage2 are using the following typedef for little endian integers:

typedef uint32_t mscc_le_u32;
The file format of stage1 and stage2 is documented below.

2.1.1.1.1 Stage 1
The binary stage1 header is defined by the following:

typedef struct mscc_firmware_vimage {
 mscc_le_u32 magic1; // 0xedd4d5de
 mscc_le_u32 magic2; // 0x987b4c4d
 mscc_le_u32 version; // 0x00000001

 mscc_le_u32 hdrlen; // Header length
 mscc_le_u32 imglen; // Total image length (stage1)

 char machine[32]; // Machine/board name
 char soc_name[32]; // SOC family name
 mscc_le_u32 soc_no; // SOC family number

 mscc_le_u32 img_sign_type; // Image signature algorithm. TLV has
 // signature data
 // After <hdrlen> bytes;
 // struct mscc_firmware_vimage_tlv tlvs[0];
} mscc_firmware_vimage_t;
Immediately after the stage1 header is a number of stage1 Type Length Value (TLV). Each TLV follows
the following format (no padding between TLVs):

typedef struct mscc_firmware_vimage_tlv {
 mscc_le_u32 type; // TLV type (mscc_firmware_image_stage1_tlv_t)
 mscc_le_u32 tlv_len; // Total length of TLV (hdr, data, padding)
 mscc_le_u32 data_len; // Data length of TLV
 u8 value[0]; // Blob data
} mscc_firmware_vimage_tlv_t;
The following enum documents the list of TLVs supported:

typedef enum {
 MSCC_STAGE1_TLV_KERNEL = 0,
 MSCC_STAGE1_TLV_SIGNATURE = 1,
 MSCC_STAGE1_TLV_INITRD = 2,
 MSCC_STAGE1_TLV_KERNEL_CMD = 3,
 MSCC_STAGE1_TLV_METADATA = 4,
 MSCC_STAGE1_TLV_LICENSES = 5
} mscc_firmware_image_stage1_tlv_t;
The following enum documents the list of signatures supported:

typedef enum {
 MSCC_FIRMWARE_IMAGE_SIGNATURE_MD5 = 1,
 MSCC_FIRMWARE_IMAGE_SIGNATURE_SHA256 = 2,
 MSCC_FIRMWARE_IMAGE_SIGNATURE_SHA512 = 3,
} mscc_firmware_image_signature_t;
The signature covers the whole stage1 TLVs. This digital signature scheme is calculated based on
OpenSSL RSA.

2.1.1.1.2 Stage 2
The stage2 part does not have a common header, it is just a sequence of stage2 TLVs. The stage2 TLV
header looks like this:

Linux Customizations

ENT-AN1163-4.1 Application Note Revision 1.0 4

typedef struct mscc_firmware_vimage_s2_tlv {
 mscc_le_u32 magic1; // 0xa7b263fe
 mscc_le_u32 type; // TLV type (mscc_firmware_image_stage2_tlv_t)
 mscc_le_u32 tlv_len; // Total length of TLV (hdr, data, padding)
 mscc_le_u32 data_len; // Data length of TLV
 mscc_le_u32 sig_type; // Signature type
 // (mscc_firmware_image_signature_t)
 u8 value[0]; // Blob data
} mscc_firmware_vimage_stage2_tlv_t;
In contrast to stage1 TLVs, stage2 TLVs embed the signature directly into each TLV. This means that the
stage2 TLVs is signed individually. The binary layout is as follows:

Figure 1 • Stage2 TLVs Binary Layout

The supported stage2 TLV types are documented by the following enumeration (currently only ROOTFS
is supported):

typedef enum {
 MSCC_STAGE2_TLV_ROOTFS = 2,
} mscc_firmware_image_stage2_tlv_t;
Root file system element ROOTFS

The root file system element TLV type is 2. The root file system element is optional and may be repeated,
meaning that a given firmware image may include between zero and N of these elements. The data
content of this TLV is a new TLV area using the following header:

Figure 2 • ROOTFS TLV Header

The following sub-tlv types are supported by the root file system elements.

• Name—an ASCII encoded string with the name of this element.
• Version—an ASCII encoded string with the version information of this element.
• License terms—an ASCII encoded string with the license terms of this element.
• PreExec—an executable that is being invoked before the tar archive is extracted into the root file

system. Not implemented in current release.
• Content—an xz compressed tar archive or squashfs filesystem.
• PostExec—an executable that is being invoked after the tar archive is extracted into the root file

system. Not implemented in current release.
If the firmware image includes more than one root file system elements, then the content of those is
being merged. If the same file(s) is present in multiple archives, then it is the content from the last archive
that wins.

2.1.1.2 Tool Support mfi.rb
The MFI command line tool is used to construct and inspect the firmware images. It also supports
appending/replacing the contents to an existing firmware image. It is written in Ruby, and so should work
across platforms (WIN, OSX, and LINUX) as long as Ruby is supported and properly installed.

The MFI tool includes a number of different submodules for different operations on the firmware images.

Linux Customizations

ENT-AN1163-4.1 Application Note Revision 1.0 5

Note: The MFI tool currently supports submodules, such as stage1, bootloader, and rootfs. More submodules
might be added in the future.

Add submodule name for further help information on a specific submodule.

Stage1 is composed as follows:

mfi.rb -o <output_file_name>.mfi stage1 \
 --kernel-set <path_to_kernel_file> \
 --initrd-set <path_to_initrd_file> \
 --kernel-command "init=/usr/bin/stage1-loader loglevel=4" \
 --metadata-set <path_to_metadata_file> \
 --license-terms <path_to_licensedata_file> \
 --machine <machine_name> \
 --soc-name <soc_name> \
 --soc-no <soc_number>
In the example above, --kernel-command can also be adjusted as needed. Because stage1 is the
first component in the firmware image, there is no input file (annotated as -i).

Upon execution, <output_file_name>.mfi, with all stage1 components in place, will be created.

The other submodules like rootfs are added in the same manner. <new_output_file_name>.mfi
could be same as the input file.

mfi.rb -i <output_file_name>.mfi -o <new_output_file_name>.mfi rootfs-squash\
 --action append \
 --name "rootfs" \
 --version "SDK_VERSION" \
 --file <path_to_rootfs_file>.squashfs

2.1.2 ServiceD
ServiceD is a service manager. The switch application and the other user applications are all considered
as services that will be spawned, monitored, and managed by ServiceD.

$ mfi -help
Usage: mfi [global-options] [<command> [command-specific-options]]

-i, --input <file> Firmware image to read. New image is created if not specified.
 -o, --output <file> Firmware image to write.
 -k, --public-key <file> Use public key for validation.
 -v, --verbose <lvl> Set verbose level.
 -d, --dump Dump the inventory of TLV(s) in the firmware image.
 -V, --version Print the version of this program and exit.

-c, --collect-sha <file> Collect sha's to file when doing dump.

Commands:
 help Prints this help message.
 stage1 Inspect or alter the stage1 area of the firmware image.
 bootloader Inspect or alter any bootloader tlv in the firmware image.
rootfs-squash Inspect or alter the rootfs tlv(s) in the firmware image (assuming squashfs).

$ ## mfi <submodule> -help
$ mfi stage1 -help
Usage: stage1 [options]
 -a, --kernel-get <file> Extract the kernel from the firmware image, and write it to <file>.
 -b, --kernel-set <file> Update the kernel blob in the firmware image with the raw content of <file>.
 -c, --initrd-get <file> Extract the initrd from the firmware image and write it to <file>.
 -d, --initrd-set <file> Update the initrd blob in the firmware image with the raw content of <file>.
 -e, --metadata-get <file> Extract the metadata blob from the firmware image and write it to <file>.

-f, --metadata-set <file> Update the metadata blob in the firmware image with the raw content of <file>.
 -m, --machine <string> Set the machine string in the image..
 -w, --soc-name <string> Set the soc-name string in the image..
 -n, --soc-no <string> Set the soc-no string in the image..
 -k, --kernel-command <string> Set the kernel command line in the image..
 -l, --license-terms <file> Update the licenses blob in the firmware image with the raw content of <file>.

-s, --sign-data <type> <keyfile> Sign data with (RSA) key

Linux Customizations

ENT-AN1163-4.1 Application Note Revision 1.0 6

2.1.2.1 Service Configuration File
Each service is spawned according to its configuration file, located in the /etc/mscc/service/ folder. The
configuration file follows certain formats.

The following is an example of a ServiceD configuration file:

Start of config file
Comment line starts with '#'
This is an example configuration file called
/etc/mscc/service/switch_app.service
name = switch_app
type = service
env = FOO=bar
env = Hello=world
depend =
cmd = /usr/bin/switch_app
ready_file = /tmp/switch_app.ready

2.1.2.2 Appearance and Requirements
The following table lists all the fields allowed in a ServiceD configuration file. ServiceD will NOT start a
service that has a faulty configuration.

2.1.3 JSON-IPC
The WebStaX switch application includes a JSON Inter-Process Communication (IPC) module that
provides an IPC service to other applications. This IPC can be used for two purposes:

• The user application can send JSON requests and receive corresponding JSON responses for
normal configuration or monitoring purposes.

• The user application can add/delete registrations for event notifications. If a registered event occurs,
the switch application will send a JSON notification message to the user application.

Table 1 • Fields in ServiceD Configuration File

Fields Appearance and Requirements Description
name Must appear once Name of service (only used for debugging and logging).

type Allow once Type of service. Allowed values are:
Service—service is a long running process that will be auto-
restarted by ServiceD, if it exits. Its ready file will be also deleted
until it is ready again. Oneshot—If the oneshot process executes
and exits normally, it will be seen and its ready file will be created
accordingly, on restart. Otherwise, it is seen as non-ready and
will not be restarted.

env Allow zero or more Specify environment variables to be set for the given service.
Must follow syntax: key=val

cmd Must appear once Specify the command to invoke.

depend Allow zero or more A list of services that this service depends on. The service will
not be started before all its dependencies are ready.

ready_file Allow once Specifies a file that the service can use to flag that it is ready.
The ServiceD application will poll the availability of the file, and
the service is not considered ready until the ready_file exists.

serviced_profile Allow once Profile of service. Any string is allowed. Only services with the
targeted profile will be spawned by ServiceD. webstax is the
default profile if nothing is specified in the service configuration
file. debug can be speficied in the kernel command line so as to
start the linux shell for debug purpose.

Linux Customizations

ENT-AN1163-4.1 Application Note Revision 1.0 7

Figure 3 • JSON-IPC Architecture

2.1.3.1 IPC Message Format
The JSON IPC has the following properties.

• The IPC uses a Unix domain socket bound to /var/run/json_ipc.socket.
• The exchanged messages consist of two parts:

• Length: 4 byte data length field in native CPU endianness.
• Data: JSON message with the length above. JSON notification registration is done using Add

registration (jsonIpc.config.notification.add)method and Delete registration
(jsonIpc.config.notification.del) method.

Figure 4 • IPC Message Format

2.1.3.2 JSON Message Examples
The following examples only show the JSON message part of the JSON IPC message (the length of field
is not included). First, a normal request-response communication is shown (get system information):

User Application -> Switch Application:
{"method":"systemUtility.config.systemInfo.get",
 "params":[],
 "id":"json_ipc"}

Switch Application -> User Application:
{"id":"json_ipc",
 "error":null,
 "result":{"Hostname":"my-switch",
 "Contact":"",
 "Location":""}}
Next, an event registration (port status update), an event notification (link up), and an event de-
registration (port status update) are shown:

User Application -> Switch Application:
{"method":"jsonIpc.config.notification.add",
 "params":["port.status.update"],
 "id":"json_ipc"}

Switch Application -> User Application:
{"method":"port.status.update",
 "id":null,
 "params":[{"event-type":"modify",
 "key":"Gi 1/1",
 "val":{"Link":false,
 "Fdx":true,
 "Fiber":false,
 "Speed":"speed1G",
 "SFPType":"none",
 "SFPVendorName":"",
 "SFPVendorPN":"",
 "SFPVendorRev":"",
 "LossOfSignal":false,

Linux Customizations

ENT-AN1163-4.1 Application Note Revision 1.0 8

 "TxFault":false,
 "Present":false,
 "SFPVendorSN":""}}]}

User Application -> Switch Application:
{"method":"jsonIpc.config.notification.del",
 "params":["port.status.update"],
 "id":"json_ipc"}

2.1.4 Boot-time Configuration
The switch application includes a number of features that can be disabled at boot-time. This may be
done if a given feature is not desired or if it is preferred to implement the feature outside the switch
application. The following features can currently be disabled.

• CLI through console port
• CLI through Telnet
• CLI through SSH
• SNMP
• Web handlers
• Web server
The boot-time configuration is done in /etc/switch.conf on the system. This file does not exist by
default, but may be added to the image using an MFI file. The format of the file is JSON-based as shown
below. In this example, SSH and web handlers are disabled at boot-time.

{
 "cli":{
 "enable":true,
 },
 "ssh":{
 "enable":false,
 },
 "snmp":{
 "enable":true
 },
 "telnet":{
 "enable":true
 },
 "web":{
 "enable":true,
 "handlers":false
 }
}

2.2 Use Cases
The following sections discusses various use cases with examples of how the different facilities can be
used.

2.2.1 Custom Web
The web pages are added as a TLV section by default. Therefore, it is very easy to customize web by
replacing the default web by a customized one.

In this use case, a simple HTML file capable of showing port status through JSON interface will be
demonstrated.

2.2.1.1 Create Custom Web File
Execute the following script (custom_web.sh)to create a custom web file.

Linux Customizations

ENT-AN1163-4.1 Application Note Revision 1.0 9

There are many web handlers provided by the two below.

• FastCGI
• Microsemi switch application
mkdir -p etc
cat > etc/switch.conf <<\EOF
{
 "web":{
 "enable":true,
 "handlers":false
 }
}
EOF
mksquashfs ./custom-web custom_web.squashfs
Now a new file, custom_web.squashfs, is available for replacement.

2.2.1.2 Replace
Before replacing the file, custom_web.squashfs, we need to inspect the MFI image for the index of
the default web TLV section.

/<mfi script dir>/mfi.rb \
 -i <some dir>/<targeted switch>.mfi \
 -d
Example output could be:

Stage1
 Version:1
 Magic1:0xedd4d5de, Magic2:0x987b4c4d, HdrLen:92, ImgLen:1660224
 Machine:luton10, SocName:luton26, SocNo:2, SigType:1
 Tlv Type:Kernel(0), Data Length:1454304
 Tlv Signature(1), Data Length:16 (validated)
 Tlv Initrd(2), Data Length:188416
 Tlv KernelCmd(3), Data Length:38
 Tlv Metadata(4), Data Length:188
 Tlv License(5), Data Length:17096
Stage2 - Index:0
 Tlv FsElement(2), Data Length:2415915
 MD5(1), Length:16 Data: 364cdb5a4b227211477adfa7653ab817 (validated)
 Name : rootfs

mkdir -p custom-web/var/www/webstax/
cd custom-web/var/www/webstax/
cat > custom_web.html <<\EOF
<!DOCTYPE html>
<html>
 <head>
 <title>Test test test...</title>
 <script src="jquery-2.1.4.min.js" type="text/javascript" charset="utf-8"></script>
</head>

 <body><div id = "port0" >PORT --- LINK STATUS</div>
 <script type="text/javascript">
 function port_status_cb(d) {
 for (var i = 0; i < d["result"].length; ++i) {
 var newdiv = "port"+(i + 1);

$('#port' + i).append($('<div id='+newdiv+'></div>'));
 $('#port' + (i+1)).html(d["result"][i]["key"] + " --- " + d["result"][i]["val"]["Link"]);}}
 $(function () {$.post("/json_rpc", "{\"method\":\"port.status.get\",\"params\":[],\"id\":\"jsonrpc\"}")
 .done(function(data){ console.log(data); port_status_cb(data);}); });
 </script>
 </body>
</html>
EOF
wget https://code.jquery.com/jquery-2.1.4.min.js
cd ../../../

Linux Customizations

ENT-AN1163-4.1 Application Note Revision 1.0 10

 Content file name : /opt/mscc/mscc-brsdk-mips-
v01.50/stage2/smb/rootfs.squashfs
 Content file length : 2415828
Stage2 - Index:1
 Tlv FsElement(2), Data Length:2942598
 MD5(1), Length:16 Data: e9ed05b6f04d7aeac4373db6f109eef7 (validated)
 Name : vtss
 Content file name : vtss-rootfs.squashfs
 Content file length : 2942552
Stage2 - Index:2
 Tlv FsElement(2), Data Length:442733
 MD5(1), Length:16 Data: dd2f8256504737d628213ee51a134fe1 (validated)
 Name : vtss-web-ui
 Content file name : vtss-www-rootfs.squashfs
 Content file length : 442676
From the log above, Index 2 is the default web TLV section.

Now we can replace the default web TLV index (2) with the newly generated web file
custom_web.squashfs.

/<mfi script dir>/mfi.rb \
 -i <some dir>/<targeted switch>.mfi \
 -o <targeted switch>_custom_web.mfi rootfs-squash \
 --index 2 \
 --action replace \
 --name "custom_web" \
 --file <some dir>/custom_web.squashfs
At this point, a image named <targeted switch>_custom_web.mfi is generated. Execute the
commands below to inspect it again.

/<mfi script dir>/mfi.rb \
 -i <some dir>/<targeted switch>_custom_web.mfi \
 -d
The example output is shown as below (note that the Index 2 is now replaced by the customized web).

Stage1
 Version:1
 Magic1:0xedd4d5de, Magic2:0x987b4c4d, HdrLen:92, ImgLen:1660224
 Machine:luton10, SocName:luton26, SocNo:2, SigType:1
 Tlv Type:Kernel(0), Data Length:1454304
 Tlv Signature(1), Data Length:16 (validated)
 Tlv Initrd(2), Data Length:188416
 Tlv KernelCmd(3), Data Length:38
 Tlv Metadata(4), Data Length:188
 Tlv License(5), Data Length:17096
Stage2 - Index:0
 Tlv FsElement(2), Data Length:2415915
 MD5(1), Length:16 Data: 364cdb5a4b227211477adfa7653ab817 (validated)
 Name : rootfs
 Content file name : /opt/mscc/mscc-brsdk-mips-
v01.50/stage2/smb/rootfs.squashfs
 Content file length : 2415828
Stage2 - Index:1
 Tlv FsElement(2), Data Length:2942598
 MD5(1), Length:16 Data: e9ed05b6f04d7aeac4373db6f109eef7 (validated)
 Name : vtss
 Content file name : vtss-rootfs.squashfs
 Content file length : 2942552
Stage2 - Index:2
 Tlv FsElement(2), Data Length:488963

Linux Customizations

ENT-AN1163-4.1 Application Note Revision 1.0 11

 MD5(1), Length:16 Data: 233048efebce4424331f09ccd8b4c448 (validated)
 Name : custom-web
 Content file name : /home/wjin/custom_web.squashfs
 Content file length : 488900
Load the new image onto the device and the desired HTML files should be accessible now.

Verify it through the following commands.

platform debug allow
debug system shell
/ # ls -la /var/www/webstax/ | grep custom_web
-rw-r--r-- 1 root root 98 Jan 1 00:00
custom_web.html
Log on to the device and open the customized web page to see the port status.

Figure 5 • Custom Web: Port Status

2.2.2 Quagga Integration
Quagga is a routing software suite supporting most of the main routing protocols, such as RIP and OSPF.
It contains several daemons, one for each protocol, and one called zebra for interface declaration and
static routing. In this use case, we will spawn zebra as a static routing daemon through ServiceD.

First a quagga.service configuration file, informing ServiceD how to start and manage it, is necessary.
Then we will cross compile and build zebra from a quagga release. Appending it upon a WebStaX
release is the last step.

2.2.2.1 Service Configuration File
A simple quagga service configuration file (quagga.service)can be:

name = quagga
type = service
depend = switch_app
cmd = /usr/sbin/zebra -f /etc/quagga/zebra.conf -i /tmp/q.pid
You need to put this file under /tmp/quagga_install/etc/mscc/service on your development PC
(create these directories, if needed). It will eventually be compressed into the final MFI image.

Note: Do not append -d or --daemon in the cmd line, as ServiceD will do it automatically.

2.2.2.2 Configure, Compile, and Install
Besides the service configuration file, we need to have quagga configured, compiled, and installed for
the target device.

As the very first step, set the environment variables, such as PATH, GCC, and LD in build_quagga.sh
file correctly. A Microsemi SDK, supporting ServiceD, has to be correctly set in PATH as well.

Linux Customizations

ENT-AN1163-4.1 Application Note Revision 1.0 12

export PATH="/opt/mscc/mscc-brsdk-mips-vXX.XX/stage2/smb/x86_64-
linux/usr/bin:/usr/bin:/bin:/usr/local/bin:/usr/local/sbin"

export LD="mipsel-buildroot-linux-uclibc-ld"
export CC="mipsel-buildroot-linux-uclibc-gcc"
export GCC="mipsel-buildroot-linux-uclibc-gcc"
export STRIP="mipsel-buildroot-linux-uclibc-strip"
export CFLAGS=" -I/tmp/quagga_install/usr/include/"
export LDFLAGS=" -L/tmp/quagga_install/usr/lib/"

Make sure MSCC SDK is in place through checking gcc version
$GCC --version
if ["$?" -ne 0]
then
 echo "PATH is wrong!"
 exit 1
fi
Next, follow the usual procedure to compile as any other Linux software that comes with source code.

./configure \
 --target=mipsel-buildroot-linux-uclibc \
 --host=mipsel-buildroot-linux-uclibc \
 --build=x86_64-unknown-linux-gnu \
 --prefix=/tmp/quagga_install/usr \
 --sysconfdir=/tmp/quagga_install/etc \
 --localstatedir=/tmp \
 --enable-user=root \
 --enable-group=root \
 --program-prefix="" \
 --enable-zebra
 make
 make install
The following zebra.conf file is needed to start zebra and it should be placed under the
/tmp/quagga_install/etc/quagga folder. (For more information, see the Quagga User
manual.)

hostname Router
password zebra
enable password zebra
interface lo
interface sit0
log file zebra.log
The very last step of build_quagga.sh is to compress all the files for appending it later by mfi.rb
script.

Clean up
rm -rf /tmp/quagga_install/usr/share
rm -rf /tmp/quagga_install/usr/include

Copy service config file, zebra daemon config file
mkdir -p /tmp/quagga_install/etc/mscc/service
cp quagga.service /tmp/quagga_install/etc/mscc/service/.
mkdir /tmp/quagga_install/etc/quagga
cp zebra.conf /tmp/quagga_install/etc/quagga/.

Compress with the correct dir hierarchy
mksquashfs /tmp/quagga_install/*
quagga.squashfs -comp xz -all-root

http://www.nongnu.org/quagga/docs/docs-info.html#Sample-Config-File
http://www.nongnu.org/quagga/docs/docs-info.html#Sample-Config-File

Linux Customizations

ENT-AN1163-4.1 Application Note Revision 1.0 13

At this point, a file named, quagga.squashfs, should be generated after executing the shell script
build_quagga.sh.

2.2.2.3 Append
This operation can be automated by utilizing the script append_quagga.sh, below. We assume that the
user already has a valid MFI image <targeted switch>.mfi for the targeted device, and the
mfi.rb script is in place as well.

/<mfi script dir>/mfi.rb \
 -i <targeted switch>.mfi \
 -o <targeted switch>_quagga.mfi rootfs-squash \
 --action append \
 --name "quagga_zebra" \
 --file /<some dir>/quagga.squashfs
The final MFI image named <targeted switch>_quagga.mfi is now available for use. Load it on
the target device and issue the commands below. As per the log, ServiceD has spawned zebra daemon
successfully.

platform debug allow
debug system shell
/ # ps
PID USER COMMAND
 1 root /usr/bin/stage1-loader
 94 root /bin/sh -c /usr/sbin/zebra -f /etc/quagga/zebra.conf -i /tmp/q.p
 95 root /usr/sbin/zebra -f /etc/quagga/zebra.conf -i /tmp/q.pid
It is also possible to telnet to zebra port-2601 of the device from your development PC now, see log
below. Hostname and password are set in the zebra.conf file we have defined previously.

$ telnet 10.99.99.25 2601
Trying 10.99.99.25...
Connected to 10.99.99.25.
Escape character is '^]'.

Hello, this is Quagga (version 0.99.24.1).
Copyright 1996-2005 Kunihiro Ishiguro, et al.

User Access Verification

Password:
Router>

2.2.3 JSON CLI-Client
As a follow-up to JSON Message Examples, page 7, we will create the following user application,
json_ipc.c, to get the device port status through JSON-IPC (see JSON-IPC, page 6).

Linux Customizations

ENT-AN1163-4.1 Application Note Revision 1.0 14

Save the C source file above and cross compile it by utilizing the Microsemi SDK and then append its
executable file upon a MFI image.

Run the following script (json_ipc.sh) to generate a MFI image containing a user application:
json_ipc.out.

/opt/mscc/mscc-brsdk-mips-vXX.XX/stage2/smb/x86_64-linux/usr/bin/mipsel-
buildroot-linux-uclibc-gcc \
 -Wall -o json_ipc.out json_ipc.c

mkdir -p json_ipc/usr/bin/
cp json_ipc.out json_ipc/usr/bin/.
mksquashfs json_ipc/. json_ipc.squashfs

/opt/mscc/mscc-brsdk-mips-vXX.XX/stage1/x86_64-linux/usr/bin/mfi.rb \
 -i <targeted switch>.mfi \
 -o json_ipc.mfi rootfs-squash \
 --action append \
 --name "json_ipc" \
 --file json_ipc.squashfs

Optional, tlv check
/opt/mscc/mscc-brsdk-mips-vXX.XX/stage1/x86_64-linux/usr/bin/mfi.rb \
 -i json_ipc.mfi \
 -d

#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <unistd.h>

int main(int argc, char *argv[]) {
 const char *msg = "{\"method\":\"port.status.get\", \"params\":[], \"id\":1}";

struct sockaddr_un remote = {
 .sun_family = AF_UNIX, // Socket type
 .sun_path = "/var/run/json_ipc.socket" // Path of the JSON_IPC pipe
 };

 int s = socket(AF_UNIX, SOCK_STREAM, 0); // create socket
connect(s, (struct sockaddr *)&remote, sizeof(remote)); // connect it

 int i = strlen(msg);
 write(s, &i, sizeof(i)); // Write size of message
 write(s, msg, i); // Write message

read(s, &i, sizeof(i)); // Read sizeof response
 char *res = calloc(i + 1, 1); // Allocate memory for the response and null terminate
 read(s, res, i); // Read response

 printf("Response: %s\n", res);

free(res);
 close(s);

 return 0;
}

Linux Customizations

ENT-AN1163-4.1 Application Note Revision 1.0 15

Load it on the device and issue the following commands to get the port status.

debug system shell
/ # /usr/bin/json_ipc.out
Response: {"id":1,"error":null,"result":[{"key":"Gi
1/1","val":{"Link":false,"Fdx":false,"Fiber":false,"Speed":"undefined","SFPT
ype":"none","SFPVendorName":"","SFPVendorPN":"","SFPVendorRev":"","LossOfSig
nal":false,"TxFault":false,"Present":false,"SFPVendorSN":""}},]}

Note: Response is partially shown due to space constraints.

2.2.4 Custom Default Configuration
The default configuration of Microsemi switch products can be customized as well. In this use case, we
are going to assign a different default IP address (192.168.0.1) instead of the Microsemi factory default
(192.0.2.1).

Execute the following script (custom_default-config.sh) to customize the default IP address.

mkdir -p default_config/etc/mscc/icfg/
cat > default_config/etc/mscc/icfg/default-config <<\EOF
! Default configuration file
! --------------------------
!
! This file is read and applied immediately after the system configuration is
! reset to default. The file is read-only and cannot be modified.
vlan 1
 name default
interface vlan 1
 ip address 192.168.0.1 255.255.255.0
end
EOF
mksquashfs ./default_config default_config.squashfs

/opt/mscc/mscc-brsdk-mips-vXX.XX/stage1/x86_64-linux/usr/bin/mfi.rb \
 -i <some dir>/<targeted switch>.mfi \
 -o <targeted switch>_default_config.mfi rootfs-squash \
 --action append \
 --name "default_config" \
 --file default_config.squashfs

Optional, tlc check
/opt/mscc/mscc-brsdk-mips-vXX.XX/stage1/x86_64-linux/usr/bin/mfi.rb \
 -i <targeted switch>_default_config.mfi \
 -d
After executing the script, a new MFI image <targeted switch>_default_config.mfi is
generated. Load it on the device and use the following commands to check the newly installed
customized default configuration.

• show running-config
• reload default

show running-config
... Non-related log omitted
interface vlan 1
 ip address 10.99.99.25 255.255.255.0
...
reload default
% Reloading defaults. Please stand by.
show running-config
...

Linux Customizations

ENT-AN1163-4.1 Application Note Revision 1.0 16

interface vlan 1
 ip address 192.168.0.1 255.255.255.0
...
platform debug allow
debug system shell
/ # ls -la /switch/icfg/default-config
lrwxrwxrwx 1 root root 29 Jan 1 00:00
#/switch/icfg/default-config -> /etc/mscc/icfg/default-config
As we can see from the log, 192.168.0.1 becomes the default IP address every time the user performs
ICLI command reload default.

	1 Revision History
	1.1 Revision 1.0

	2 Linux Customizations
	2.1 Facilities
	2.1.1 Modular Firmware Images
	2.1.2 ServiceD
	2.1.3 JSON-IPC
	2.1.4 Boot-time Configuration

	2.2 Use Cases
	2.2.1 Custom Web
	2.2.2 Quagga Integration
	2.2.3 JSON CLI-Client
	2.2.4 Custom Default Configuration

