
AN1047

Revision 2.9

Oct 2014 Confidential

ICLI Command Generation Guide

Application Note

Revision 2.9
Oct 2014 Confidential Page 2 of 64

Vitesse

Corporate Headquarters

741 Calle Plano

Camarillo, California 93012

United States

www.vitesse.com

Vitesse Semiconductor Corporation (“Vitesse”) retains the right to make changes to its
products or specifications to improve performance, reliability or manufacturability. All
information in this document, including descriptions of features, functions,
performance, technical specifications and availability, is subject to change without
notice at any time. While the information furnished herein is held to be accurate and
reliable, no responsibility will be assumed by Vitesse for its use. Furthermore, the

information contained herein does not convey to the purchaser of microelectronic
devices any license under the patent right of any manufacturer.

Vitesse products are not intended for use in life support products where failure of a

Vitesse product could reasonably be expected to result in death or personal injury.
Anyone using a Vitesse product in such an application without express written consent
of an officer of Vitesse does so at their own risk, and agrees to fully indemnify Vitesse
for any damages that may result from such use or sale.

Vitesse Semiconductor Corporation is a registered trademark. All other products or
service names used in this publication are for identification purposes only, and may be
trademarks or registered trademarks of their respective companies. All other
trademarks or registered trademarks mentioned herein are the property of their
respective holders.

Copyright © 2013 Vitesse Semiconductor Corporation

Revision 2.9
Oct 2014 Confidential Page 3 of 64

TERMS OF USE

The information provided by Vitesse Semiconductor Corporation (“Vitesse”) in this
document pursuant to these terms (“Agreement”) is intended for illustrative purposes

only. All information provided herein is subject to change at any time without notice.
The information provided, including but not limited to Sample Code (“Software”), is
protected by United States and other applicable copyright laws and international
treaties. Vitesse does not grant You any license, explicitly or implicitly, under any
trademark, patent, copyright, mask work protection right, trade secret or any other
intellectual property right.

ALL INFORMATION, INCLUDING BUT NOT LIMITED TO THE SAMPLE CODE (“CODE ”)

SUPPLIED, IS PROVIDED STRICTLY “AS-IS” WITH NO WARRANTIES OF ANY KIND,
EXPRESS, IMPLIED OR STATUTORY, MADE WITH RESPECT TO THE INFORMATION TO
INCLUDE THE CODE AND ALL ACCOMPANYING WRITTEN MATERIALS, INCLUDING BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. YOU ASSUME THE ENTIRE
RISK AS TO THE QUALITY, ACCURACY, AND PERFORMANCE OF THE INFORMATION,

AND YOU ASSUME ANY AND ALL RISK AND LIABILITY FOR ANY ACTIONS TAKEN BY
YOU ON THE BASIS OF ITS ANALYSIS OR OTHER USE OF THE INFORMATION,
INCLUDING BUT NOT LIMITED TO MODIFICATIONS TO YOUR PRODUCTS IN LIGHT OF
SUCH USE OF INFORMATION, AND YOU HEREBY ACKNOWLEDGE THAT VITESSE
SHALL HAVE NO RESPONSIBILITY OR LIABILITY AS A RESULT OF YOUR USE OF
INFORMATION PROVIDED HEREUNDER.

IN NO EVENT SHALL VITESSE BE LIABLE FOR ANY DAMAGES WHATSOEVER

(INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY
LOSS) ARISING OUT OF USE OR INABILITY TO USE THE CODE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

This Agreement is governed by the laws of the State of California, without regard to
principles of conflicts of laws. Each provision of this Agreement is severable. If a
provision is found to be unenforceable, this finding does not affect the enforceability of

the remaining provisions of this Agreement. This Agreement is binding on successors
and assigns. By accessing the information contained in or referenced by this
document, You acknowledge that You have read this Agreement, that You understand
it, that You agree to be bound by its terms, and that this is the complete and exclusive

statement of the Agreement between You and Vitesse regarding the information and
Code.

Copyright © 2013 Vitesse Semiconductor Corporation

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 4 of 64

Contents

1 Introduction .. 6

1.1 Overview .. 6
1.2 Audience .. 6
1.3 Revision History ... 6

2 Generation Flow .. 9

3 Writing Scripts .. 10

3.1 Command Syntax ... 10
3.1.1 Variable “< >” ... 10
3.1.2 Exclusive Or “|” ... 10
3.1.3 Mandatory “{ }” .. 10
3.1.4 Optional “[]” .. 11
3.1.5 Random Optional “[] [] … []” ... 11
3.1.6 Random Must “{[] [] … []}*n”... 12
3.1.7 Repeat “…” ... 12
3.1.8 Loop “()*N” ... 13
3.1.9 Limitation ... 13

3.2 Script File .. 14
3.2.1 Module Segment .. 15
3.2.2 Include Segment ... 16
3.2.3 Function Segment .. 17
3.2.4 Command Segment ... 17
3.2.5 Defining Constant String ... 30
3.2.6 An Example .. 32

4 Make on eCos .. 34

4.1 Make File ... 34

A Appendix: Variable Types .. 35

A.1 <a~b> .. 35
A.2 <a-b,c,d-e> ... 35
A.3 <clock_id> .. 36
A.4 <cword> ... 36
A.5 <date> ... 37
A.6 <domain_name> .. 37
A.7 <dpi> ... 38
A.8 <dscp> ... 38
A.9 <dword> ... 39
A.10 <fword> .. 39
A.11 <hexval> .. 40
A.12 <hhmm> ... 40
A.13 <host_name> .. 41
A.14 <int> .. 41
A.15 <int16> .. 42
A.16 <int8> .. 42
A.17 <ipv4_abc> ... 43
A.18 <ipv4_addr> .. 43
A.19 <ipv4_mcast> ... 43
A.20 <ipv4_netmask> .. 44
A.21 <ipv4_nmcast> .. 44
A.22 <ipv4_prefix> .. 45

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 5 of 64

A.23 <ipv4_subnet> .. 45
A.24 <ipv4_ucast> .. 46
A.25 <ipv6_addr> .. 46
A.26 <ipv6_mcast> ... 47
A.27 <ipv6_netmask> .. 47
A.28 <ipv6_prefix> .. 48
A.29 <ipv6_subnet> .. 48
A.30 <ipv6_ucast> .. 49
A.31 <kword> ... 50
A.32 <line> ... 50
A.33 <mac_addr> .. 51
A.34 <mac_mcast> .. 51
A.35 <mac_ucast>... 51
A.36 <oui> ... 52
A.37 <pcp> ... 52
A.38 <port_type_id> .. 53
A.39 <port_type_list> .. 53
A.40 <range_list> .. 54
A.41 <string> .. 54
A.42 <switch_id> .. 55
A.43 <switch_list> ... 55
A.44 <time> ... 56
A.45 <uint> .. 56
A.46 <uint16> ... 56
A.47 <uint8> .. 57
A.48 <url> .. 57
A.49 <vlan_id> ... 58
A.50 <vlan_list> .. 59
A.51 <vword> ... 59
A.52 <word> ... 60

B Appendix: FAQ... 61

C Appendix: Short-cut keys .. 63

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 6 of 64

1 Introduction

1.1 Overview

In order to use a command on ICLI engine, the command needs to be registered into
ICLI engine. This document shows how to write script files to auto-generate C and H
files for command auto-registration.

The steps are as the following chapters.

 Generation Flow.

 Writing Script.

 Command Generation.

1.2 Audience

This document is for software and application developers who need to understand and
use the ICLI engine.

1.3 Revision History

Revision Date Reviewers Description

02-09 30 Oct 2014 CP 1. Update by 3.60 Mass.

02-08 09 Oct 2014 CP 1. Section 3.1.8, Loop.

02-07 29 Aug 2013 CP 1. Section 3.2.4, add 2 new tags, GOTO_MODE
and SUB_MODE.

2. Appendix C, modify ‘?’ usage.

02-06 15 Aug 2013 CP 1. Appendix C, add Ctrl-Q to display full
command syntax.

02-05 31 Jul 2013 CP 1. Appendix A, list variables allow descending
order.

02-04 30 Jul 2013 CP 1. Appendix A, list variables allow incremental
only, not equal and not decremented.

02-03 08 Jul 2013 CP 1. Section 3.2.4, update RUMTIME usage.

2. Appendix A, add new variables, <clock_id>,
<hexval>, <vword>, <switch_id>,
<switch_list>.

3. Appendix C, add Ctrl-w key and remove ESC
key.

02-02 21 Jan 2013 CP 1. Appendix A, add 3 new variable types,
<ipv4_abc>, <dword>, <fword>.

2. Appendix A, modify descriptions for <a-b>
and <a~b>.

02-01 04 Dec 2012 CP 1. Appendix A, add 1 new variable type,
<ipv4_nmcast>.

2. Appendix C, created to list short-cut keys.

02-00 26 Oct 2012 CP 1. Section 3.2.5, describe the syntax of random
optional.

2. Section 3.2.6, describe the syntax of random
must.

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 7 of 64

Revision Date Reviewers Description

01-09 24 Oct 2012 CP 1. Section 3.2.4, give more descriptions for
RUNTIME tag.

2. Appendix B.1, created for multiple optional
begin.

01-08 12 Oct 2012 CP 1. Section 3.1.5, modify repeat syntax for
{ [a|b|c] … }

2. Appendix A, add 1 new variable type,
<hostname>.

01-07 27 Sep 2012 CP 1. Appendix A, add 4 new variable types, <dpl>,
<dscp>, <oui> and <pcp>.

2. Appendix B, created for ICLI parsing error
reference guide.

3. Section 3.1.6, created to describe the design
limitation.

4. Section 3.2.4 Export segment, removed.

01-06 18 Sep 2012 CP 1. Appendix A, add 2 new variable types,
<port_type_id> and <port_type_list>.

01-05 28 Aug 2012 CP 1. Appendix A, add 3 new variable types,
<ipv4_prefix>, <ipv6_prefix> and <hhmm>.

01-04 21 Aug 2012 CP 1. Section 3.1.5, give the examples for all
syntax.

2. Appendix A, modify the descriptions of word,
kword, string and line.

3. Appendix A, modify the C types of range_list,
a~b, port_list, vlan_list.

01-03 13 Jul 2012 CP 1. Section 3.2.5, add 2 command properties,

ICLI_CMD_PROP_LOOSELY and

ICLI_CMD_PROP_STRICTLY.

01-02 18 May 2012 CP 1. Section 3.2.5, multiple command modes in a
command.

2. Section 3.2.5 add new tags.

 FUNC_NAME

 FUNC_REUSE

 NO_FORM_DOC_CMD_DESC

 NO_FORM_DOC_CMD_DEFAULT

 NO_FORM_DOC_CMD_USAGE

 NO_FORM_DOC_CMD_EXAMPLE

 NO_FORM_VARIABLE_BEGIN

 NO_FORM_VARIABLE_END

 NO_FORM_CODE_BEGIN

 NO_FORM_CODE_END

 DEFAULT_FORM_DOC_CMD_DESC

 DEFAULT_FORM_DOC_CMD_DEFAULT

 DEFAULT_FORM_DOC_CMD_USAGE

 DEFAULT_FORM_DOC_CMD_EXAMPLE

 DEFAULT_FORM_VARIABLE_BEGIN

 DEFAULT_FORM_VARIABLE_END

 DEFAULT_FORM_CODE_BEGIN

 DEFAULT_FORM_CODE_END

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 8 of 64

Revision Date Reviewers Description

01-01 04 May 2012 CP 1. New syntax, Repeat “…” in Section 3.2.6.

2. New variable, <line>.

3. New feature, Section 3.1.5 Defining Constant
String.

4. Remove MODE_CMD.

5. Remove FUNC_NAME.

6. Remove Section 4 Command Generation

Utility.

7. Remove Appendix B.

00-09 09 Mar 2012 CP 2. Revise for training course.

00-08 27 Dec 2011 CP 1. Section 3.1.4: Add random optional.

00-07 14 Oct 2011 CP 1. Add new variable type, <a~b>.

00-06 16 Sep 2011 CP 1. Documentation mechanism.

00-05 28 Jul 2011 CP 1. Appendix A: add <port_type>, modify
<port_id> and <port_list>.

00-04 14 Jul 2011 CP 1. Syntax change: change the use of [] and {},
that is, [] for optional and {} for mandatory.

00-03 20 Jun 2011 CP 1. Section 5: add.

00-02 24 May 2011 Rene 1. 151 revisions. Please refer to AN1047-00-02-
ICLI
_Command_Generation_Guide_RBN20110524
.doc

00-01 18 May 2011 Srinivas 1. Appendix A: add a variable type, double, 64-
bit floating point.

00-00 13 May 2011

13 May 2011

CP

Srinivas

Initial release.

1. Section 3.1, 3.2, 3.2.2, 3.2.3, 3.2.4, 3.2.5:
English corrections.

2. Section 3.2.1: change name of Global
Segment to Module Segment.

3. Section 3.2.3: add constant and data type
declarations in Function Segment.

4. Section 3.2.5: add more descriptions for
CODE sub-segment.

5. Chapter 4: the layout of directory is
modified.

6. Appendix B: add example for two ACL
commands.

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 9 of 64

2 Generation Flow

ICLI
Engine

Script file
xxx.icli

xxx.h

icli_cmd_reg.c

Parsing &
Generation Register

Command Generation Utility

xxx.c

xxx.htm
xxx.txt

cmd_ref.htm
cmd_ref.txt

Figure 1. Command Generation Flow.

Figure 1 describes the flow of command generation. The procedures are as follows.

1. Module designer writes the script file (xx.icli).

2. Use command generation utility to

a. Automatically generate the corresponding C and H files (xx_icli.c and xx_icli.h).

b. Automatically register commands into ICLI engine (icli_cmd_reg.c).

c. Automatically generate the command reference guide in HTML (cmd_ref.htm).

By writing script files rather than coding directly in C have some advantages, among others the
following:

1. Easy writing.

The script file makes module designer care about only the implementation of commands. All

others of command registrations, parsing, variable types, and memory utilization will be
processed by command generation utility.

2. Improve coding effort, reduce coding cost.

Because the module designer only writes a small portion of source code for the
implementation and the other source code is generated by the utility, the coding errors are
minimized and as a result, the coding cost is reduced and the efforts are improved.

3. Be able to ignore the implementation details, including coding convention.

4. Generate command reference guide automatically.

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 10 of 64

3 Writing Scripts

3.1 Command Syntax

Command := keyword word word …

word := keyword or variable

keyword := a constant word

variable := <variable type>

A command consists of several words and the space is used to separate each word. A word
can be a keyword or a variable. The first word must be a keyword and can not be a variable.

The keyword is a constant word that user must input literally.

The variable is a variable type enclosed by a set of angle brackets (<>) and the variable type

represents the type of the user input.

ICLI engine will parse and check whether or not the user input meets the corresponding
variable type.

For example, a command is “ip address <ipv4_addr> <ipv4_netmask>”. This command has

4 words, “ip”, “address”, “<ipv4_addr>” and “<ipv4_netmask>”. “ip” and “address” are

keywords. “<ipv4_addr>” and “<ipv4_netmask>” are variables. So, the user must input

strings to meet the type of <ipv4_addr> and <ipv4_netmask>. The valid user input could be

“ip address 10.1.1.1 255.255.0.0”. “10.1.1.1” is for <ipv4_addr> and”255.255.0.0” is for

<ipv4_netmask>.

In addition, there is some syntax provided by the ICLI engine. This syntax allows module
designer to design his/her commands with flexibility and efficiency.

3.1.1 Variable “< >”

A word enclosed by “< >” means this is a variable, and the user needs to input a string that
meets the variable type. Variable types supported by the ICLI engine are described in
Appendix A.

3.1.2 Exclusive Or “|”

An exclusive or tells the user that he can choose only one of the words at most. This should be
used with Mandatory “{}” or Optional “[]”.

3.1.3 Mandatory “{ }”

Exactly one of the words enclosed in braces ({}) must be input. Individual words must be
separated by the exclusion operator (|). For example, a command “a { b | c } d”.

Valid user inputs:

a b d

a c d

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 11 of 64

Invalid user input:

a d

 Note that if “{}” does not cooperate with “|” then it is legal but will not have any effect.

3.1.4 Optional “[]”

At most one of the words enclosed in square brackets ([]) must be input. Individual words
must be separated by the exclusion operator (|). For example, a command “a [b | c] d”.

Valid user inputs:

a b d

a c d

a d

3.1.5 Random Optional “[] [] … []”

If there are some optionals that are continuous without any mandatory, then it is called

random optional and the input can be out of sequence. For example, a command “a [b] [c]

[d]”, then “[b] [c] [d]” is random optional.

Valid user inputs:

a

a d

a c b

a d b

a b c d

a d c b

If you want one or some specific optional is at the fixed location, then {} can be used for that.
For example, a command “a [b] {[c]} [d] [e]”, then “[b] {[c]} [d] [e]” is not a

random optional because {[c]} is required at that location, but “[d] [e]” is a random

optional.

Valid user inputs:

a

a c

a b c

a b e d

a c e d

a b c e d

Invalid user inputs:

a c b

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 12 of 64

3.1.6 Random Must “{[] [] … []}*n”

The random optional allows no input. For example, a command “a [b] [c] [d]”, then the

user input “a” is valid because b, c and d are not necessary. However, sometimes, if you

need random optional and also want at least one word inputted, then the syntax of random

must provides the feature. This syntax is to enclose random option by manadory, { random

optional }*n, and to use *n to tell at least n words in random optional should be inputted,

where *n must follow } and no space is allowed, and n is for single digit only. For example, a

command “a {[b] [c] [d]}*1”, then “{[b] [c] [d]}*1” is random must that at least one of

b, c and d must be inputted.

The followings are valid random must syntax.

a {[b] [c] [d]}*1

a {[b] [c] [d]}*3

a {[b] [c] [d]}*9

a {b | {[c] [d]}*1}

a {[b] | {[c] [d]}*1}

a {b | {[c] [d {[e] [f] [g]}*2]}*1}

The followings are not valid random must syntax.

a {[b] [c] [d]} *1 => the space is not allowed between } and *1

a {[b] [c] [d]}*10 => *10 is more than 1 digit

a {[b] [c] [d]}*1a => *1a is not single digit

Note that although these commands are not valid random must syatax, they still are valid
command. But, *1, *10 and *1a are regarded as separated keywords.

On the other hand, if n is larger than the total number, m, of random optional, then m will be

applied. For example, a {[b] [c] [d]}*9 is valid and it is the same with a {[b] [c] [d]}*3

and means all b, c and d should be hiited.

3.1.7 Repeat “…”

The syntax is to repeat times in [|] or {|} automatically. The number of repeat times is the

number of seletion in [|] or {|}.

The examples for all syntax are as follows.

{{a|b|c} … } is equivalent to {a|b|c} {a|b|c} {a|b|c}.

{[a|b|c] … } is equivalent to {{a|b|c} [{a|b|c} [{a|b|c}]]}.

[{a|b|c} …] is equivalent to [{a|b|c} {a|b|c} {a|b|c}].

[[a|b|c] …] is equivalent to [{a|b|c} [{a|b|c} [{a|b|c}]]].

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 13 of 64

3.1.8 Loop “()*N”

The sub command is enclosed by () and N means the sub command can be iterated 1..N times.
The corresponding variables will be declared as arrays so you can use array index to get the
values. The following code is an example.

 CMD_BEGIN

COMMAND = debug loop (uint <uint>)*3

 ...

 CMD_VAR =

 CMD_VAR =

 CMD_VAR = b

 CMD_VAR = value

 ...

 CMD_END

Then the variables will be generated as follows.

 BOOL b[3];

 u32 value[3];

Therefore, you can use array index to get the user input for each loop input.

On the other hand, the number of loop, N, can be a constant defined in code as follows.

COMMAND = debug loop (uint <uint>)*_CONST_NUM_

Where _CONST_NUM_ is defined in the ICLI file or other header file.

3.1.9 Limitation

The limitation on ICLI engine parsing is it does not allow the same words that overlap in

mandatory{} or optional[].

For example (1), 2 commands,

 snmp client version <uint>

 snmp { server | client } address <ipv4_ucast>

Then, the keyword ‘client’ is overlapped illegally because ‘client’ is in mandatory{} in the

second command.

The example (2), 2 commands,

 snmp client version <uint>

 snmp [client] address <ipv4_ucast>

Then, the keyword ‘client’ is still overlapped illegally because ‘client’ is in optional[] in the

second command.

The solution is as follows.

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 14 of 64

Example (1) is re-designed to the following 2 commands.

 snmp client { version <uint> | address <ipv4_ucast> }

 snmp server address <ipv4_ucast>

Example (2) is re-designed to the following 2 commands.

 snmp client { version <uint> | address <ipv4_ucast> }

 snmp address <ipv4_ucast>

In other words, the concept is to use the same flat prefix as most as possible. “snmp client”

is the same flat prefix in the examples.

Another example is as following 5 commands.

 a b x

a c x

a d x

a b y

a c y

Because of the limitation, the following design will not be allowed.

 a { b | c | d } x

a { b | c } y

Instead, the following design, from left to right, is allowed.

 a b { x | y }

a c { x | y }

a d x

3.2 Script File

The script filename extension is “icli”, for example, acl.icli. The script file is composed of

segments. Each segment is composed of tags. If the tag has a value, then you can use ‘=’ to
assign the tag value, i.e. “TAG = TAG_VALUE”. If TAG_VALUE is omitted, it corresponds to not

specifying TAG at all. If the TAG_VALUE is long, you can use ‘\’ to concatenate the next line.

A segment is always enclosed by two tags, XXX_BEGIN and XXX_END, and may have sub-

segments inside.

If you want to comment a line, you can use ‘!’ or ‘#’ or “//” at the beginning of the line.

There are five segments in the script file. They are Module, Include, Function and
Command. Only the Command segment has sub-segments, VARIABLE sub-segment and

Code sub-segment. Figure 2 shows the layout of the script file.

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 15 of 64

CMD_BEGIN

COMMAND =

FUNC_NAME =

…
VARIABLE_BEGIN

...

VARIABLE_END

CODE_BEGIN

...

CODE_END

CMD_END

INCLUDE_BEGIN

...

INCLUDE_END{

{ {

Code sub-

segment

Include

Segment

Command

Segment

FUNCTION_BEGIN

...

FUNCTION_END{Function

Segment

{

Variable sub-

segment

MODULE_IF_FLAG =
Module

Segment{

Figure 2. Layout of the script file.

The subsequent sections will explain them one by one along with their supported tags
respectively.

3.2.1 Module Segment

This segment controls module-wide settings.

There is only one tag for this segment.

MODULE_IF_FLAG =

(Optional)

This tag value is used to decide whether all commands of this module are registered or
not and the generated C/H file is compiled or not.

The tag value is appended to an #if directive in icli_cmd_reg.c and the generated C/H

files. Therefore, if the tag value does not evaluate to TRUE, the commands will not be
registered and even the source code will not be compiled.

Example:

In stp.icli, tag value is VTSS_SW_OPTION_STP.

MODULE_IF_FLAG = defined(VTSS_SW_OPTION_STP)

…

…

In icli_cmd_reg.c, the auto-registration is enclosed by that tag value.

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 16 of 64

…

#if defined(VTSS_SW_OPTION_STP)

 &stp_icli_cmd_register,

#else

 NULL,

#endif

…

In generated C/H files, the whole context is enclosed by that tag value.

#if defined(VTSS_SW_OPTION_STP)

…

…

…

#endif

3.2.2 Include Segment

In this segment, you specify the include files required to compile the body of the generated C

file(s).

“icli_api.h” is auto-included by the generator and should not be specified here.

The content will be exactly pasted to the generated C file.

There are two tags for this segment.

INCLUDE_BEGIN

(Optional)

Marks the beginning of Include segment.

INCLUDE_END

(Mandatory if INCLUDE_BEGIN exists)

Marks the end of Include segment.

Example:

INCLUDE_BEGIN

#include <stdio.h>

#if STP_MODE_RSTP

#include “rstp.h”

#endif

INCLUDE_END

{

This content will be

pasted exactly to the

generated C file.

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 17 of 64

3.2.3 Function Segment

This segment allows the designer to write not only local functions that will be used in the
Command segment.

In addition, if you need constants, macros, data types, or static variables for the functions or
the command bodies, you may declare them in this segment.

The content will be exactly pasted to the generated C file.

There are two tags for this segment.

FUNCTION_BEGIN

(Optional)

Marks the beginning of function segment.

FUNCTION_END

(Mandatory if FUNCTION_BEGIN exists)

Marks the end of function segment.

Example:

FUNCTION_BEGIN

#define _IS_TRUE(x) ((x) == TRUE)

static i32 svariable;

static i32 _vid_get(void) {

 return vlan_id;

}

BOOL vid_set(i32 vid) {

 vlan_id = vid;

 return TRUE;

}

FUNCTION_END

This content will be

pasted exactly to the

generated C file.}

3.2.4 Command Segment

This segment defines the implementation of the command, one segment for one command.
The implementation contains privilege, work mode, command property, help, and execution
instance.

The followings are the tags in Command segment.

CMD_BEGIN

(Mandatory)

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 18 of 64

Marks the beginning of command segment.

CMD_END

(Mandatory)

Marks the end of command segment.

DOC_CMD_DESC =

(Optional)

The description about the command describes what the command is for.

It will be displayed in generated HTML file. Please refer to Figure 3.

If the description is too long in one line, you can use ‘\’ to concatenate lines.

If more than one paragraph, you can use multiple DOC_CMD_DESC.

DOC_CMD_DEFAULT =

(Optional)

The default value of this command.

It will be displayed in generated HTML file. Please refer to Figure 3.

DOC_CMD_USAGE =

(Optional)

The description about the command describes how to use the command.

It will be displayed in generated HTML file. Please refer to Figure 3.

If the description is too long in one line, you can use ‘\’ to concatenate lines.

If more than one paragraph, you can use multiple DOC_CMD_USAGE.

DOC_CMD_EXAMPLE =

(Optional)

The examples how to use the command.

It will be displayed in generated HTML file. Please refer to Figure 3.

If the description is too long in one line, you can use ‘\’ to concatenate lines.

If more than one paragraph, you can use multiple DOC_CMD_EXAMPLE.

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 19 of 64

Figure 3. HTML file generated.

COMMAND =

(Mandatory)

Command string with syntax. You can flexibly define the command string with the
syntax of mandatory ([]), optional ({}), or (|) and variables (<>).

FUNC_NAME =

(Optional)

Name of command execution function. ICLI command generation utility will use this
FUNC_NAME to automatically generate a corresponding static function in generated C

file. And, this corresponding static function is the command execution function that will
be executed when the user inputs a valid command.

If FUNC_NAME is not defined, then ICLI command generation utility will randomly
generate a name.

FUNC_REUSE =

(Optional)

Name of reused execution function of another command. The use of FUNC_REUSE is
to reuse the code body of another command, where code body includes Variable sub-
segment and Code sub-segment. So, when a command reuses another command’s
code body, the command can define its own command properties, for example,

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 20 of 64

privilege, help string, etc, but does not need to write Variable sub-segment and Code
sub-segment.

An example is shown below. “cmd 2” reuses code body of “cmd 1” and meanwhile,
“cmd 2” can has its own help strings and other command properties.

CMD_BEGIN

COMMAND = test-cmd 1

FUNC_NAME = _cmd_1_cb

HELP = Test command

HELP = Command 1

VARIABLE_BEGIN

 ...

VARIABLE_END

CODE_BEGIN

 ...

CODE_END

CMD_END

CMD_BEGIN

COMMAND = debug-cmd 2

FUNC_REUSE = _cmd_1_cb

HELP = Debug command

HELP = Command 2

CMD_END

PRIVILEGE =

(Mandatory)

Privilege level of the command, ICLI_PRIVILEGE_XX, defined in icli_porting.h.

Current privileges are from ICLI_PRIVILEGE_0 to ICLI_PRIVILEGE_15. The privilege is

higher if the number is larger. The command can be executed only by the session with
a higher or equal privilege.

For example, if the privilege of a command is ICLI_PRIVILEGE_7, then sessions with

privilege in ICLI_PRIVILEGE_0~ICLI_PRIVILEGE_6 can not access the command. The

sessions with privilege in ICLI_PRIVILEGE_7~ICLI_PRIVILEGE_15 can access the

command.

PROPERTY =

(Optional)

Property of the command, ICLI_CMD_PROP_XXXX, defined in icli_types.h. You can

use ‘|’ to combine them. There are 8 command properties, where if the property is

defined as the value of 0x00, then this property is the default property.

#define ICLI_CMD_PROP_ENABLE 0x00

#define ICLI_CMD_PROP_DISABLE 0x01

#define ICLI_CMD_PROP_VISIBLE 0x00

#define ICLI_CMD_PROP_INVISIBLE 0x02

#define ICLI_CMD_PROP_GREP 0x04

#define ICLI_CMD_PROP_NOT_GREP 0x00

#define ICLI_CMD_PROP_LOOSELY 0x08

#define ICLI_CMD_PROP_STRICTLY 0x00

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 21 of 64

ICLI_CMD_PROP_ENABLE and ICLI_CMD_PROP_DISABLE are mutually exclusive. They

indicate the command is executable or not. When the user inputs a valid command,
ICLI engine will check this property to decide whether or not the corresponding
command execution function is able to be executed. If it is ICLI_CMD_PROP_ENABLE,

then the command execution function is able to be executed. If it is
ICLI_CMD_PROP_DISABLE, then the command execution function will not be executed.

ICLI_CMD_PROP_VISIBLE and ICLI_CMD_PROP_INVISIBLE are mutually exclusive.

These two indicate if the command is visible to users. In other words, when the user
strokes TAB key or inputs ‘?’ for help, ICLI engine checks this property to decide
whether or not to display the command to the user. If the property is

ICLI_CMD_PROP_VISIBLE, then the command will be displayed. If the property is

ICLI_CMD_PROP_INVISIBLE, then the command will not be displayed to the user.

ICLI_CMD_PROP_GREP and ICLI_CMD_PROP_NOT_GREP are mutually exclusive. These

two indicate if the command has the grep function to format the output. If the

property is ICLI_CMD_PROP_GREP, then the command will have the grep function. If

the property is ICLI_CMD_PROP_NOT_GREP, then the command will not have the grep

function.

ICLI_CMD_PROP_LOOSELY and ICLI_CMD_PROP_STRICTLY are mutually exclusive.

ICLI_CMD_PROP_LOOSELY indicates that the extra words are allowed after the complete

valid command string. In this case, if the property is ICLI_CMD_PROP_STRICTLY, then

the command string becomes invalid.

For example,

COMMAND = ip dhcp snooping

...

PROPERTY = ICLI_CMD_PROP_LOOSELY

...

CMD_END

Then if user inputs a command string “ip dhcp snooping is to enable ip dhcp

snooping function”, the command string is valid because “ip dhcp snooping” is

valid and because of ICLI_CMD_PROP_LOOSELY, ICLI engine will ignore the extra string,

“is to enable ip dhcp snooping function”. But if the property is

ICLI_CMD_PROP_STRICTLY, then this command string is invalid because ICLI engine

still parse “is to enable ip dhcp snooping function” that is not a valid command.

If the tag value is ignored, the default value is 0 then the default property is

ICLI_CMD_PROP_ENABLE | ICLI_CMD_PROP_VISIBLE | ICLI_CMD_PROP_NOT_GREP |

ICLI_CMD_PROP_STRICTLY

Please note that the value of ICLI_CMD_PROP_ENABLE is 0 and the value of

ICLI_CMD_PROP_VISIBLE is also 0. So, if you want the command property

ICLI_CMD_PROP_ENABLE | ICLI_CMD_PROP_VISIBLE | ICLI_CMD_PROP_GREP then

you can simply define PROPERTY = ICLI_CMD_PROP_GREP.

CMD_MODE =

(Mandatory)

Command mode, ICLI_CMD_MODE_XXXX defined in icli_porting.h, that the command

works at. The command mode is a method to categorize the commands. And, the
command is visible and can be executed only in the work mode. So, the module
designer must be aware of the deployment of his each command.

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 22 of 64

The advance feature is you can define a command in multiple command modes if the
command works in multiple command modes.

Please see the example below.

COMMAND = temperature { get | set <0-100> }

...

CMD_MODE = ICLI_CMD_MODE_EXEC

CMD_MODE = ICLI_CMD_MODE_GLOBAL_CONFIG

...

CMD_END

Now, we have two ways to reuse command, the first one is FUNC_NAME/FUNC_REUSE, the

second one is multiple CMD_MODE.

If a command works in different command modes and all properties of the command are the
totally same in these different command modes, i.e., same privilege, same help, same byword,

etc, then you should use the second way. Otherwise, the first way is preferred.

GOTO_MODE =

(Optional)

The tag tells which command mode will be after executing this command. This tag is
not only for command execution, but also for parsing. If this is not defined correctly,

the parsing and execution will get problem. However, this should be automatically
generated by the tag, SUB_MODE. If you want to add this manually, you may discuss
with CP (cpwang@vitesse.com) first.

SUB_MODE =

(Optional)

Command mode, ICLI_CMD_MODE_XXXX defined in icli_porting.h, that the command

will create and will go into after execution. If this is defined, the following tasks will be
automatically implemented. In other words, all necessary tasks to create a sub mode
will be done automatically through this tag.

1. Generate command in ICLI_CMD_MODE_GLOBAL_CONFIG.

2. Generate commands in all sub modes with the property of INVISIBLE.

3. Generate the following commands in this sub mode.

 exit

 end

 help

 do <line>

IF_FLAG =

(Optional)

This is for #if conditional flag to enclose the command. The tag value will be pasted

behind #if directive. For example, IF_FLAG = defined(VTSS), then it will be #if

defined(VTSS). So, if the command execution depends on some conditions, then you

can use this to define the conditions. For example, if you want this command disabled,
then you can define IF_FLAG = 0 and the command will be enclosed by #if 0.

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 23 of 64

CMD_VAR =

(Optional)

C variable for the corresponding word of command string COMMAND, that is, this is
one-to-one mapping to each word of command string. An example is as follows.

COMMAND = a [b | c] d

CMD_VAR = v1

CMD_VAR = v2

CMD_VAR = v3

CMD_VAR = v4

v1 is for a, v2 is for b, v3 is for c and v4 is for d.

But if you do not need command variables for a and c, then you can ignore the tag

values, but the tags are still needed for keeping the correspondence.

COMMAND = a [b | c] d

CMD_VAR =

CMD_VAR = v2

CMD_VAR =

CMD_VAR = v4

v2 is for b v4 is for d.

The C variable will be auto-declared in command execution function of generated C file
according to the word type in command string COMMAND. For the first example,
because a, b, c and d are keywords, the corresponding C type is BOOL. The

declarations in command execution function of generated C file are as follows.

BOOL v1 = FALSE;

BOOL v2 = FALSE;

BOOL v3 = FALSE;

BOOL v4 = FALSE;

For the second example, the declarations in command execution function of generated

C file are as follows.

BOOL v2 = FALSE;

BOOL v4 = FALSE;

For the syntac Repeat(…), the variables will be generated automatically and mapping

to the repeat command words.

For example,

COMMAND = a { {b|c|d} … }

CMD_VAR = a

CMD_VAR = b

CMD_VAR = c

CMD_VAR = d

The command is equivalent to a {b|c|d} {b|c|d} {b|c|d}. For the red command

words, three C variables, b_1, c_1 and d_1, are automatically generated by ICLI

egnine for mapping. For the green command words, three C variables, b_2, c_2 and

d_2, are automatically generated by ICLI engine for mapping.

Through the CMD_VAR, you can know the input value of this command from the user
and use these C variables in CODE sub-segment.

The C data type of command variable declared for each corresponding variable type is
listed in Appendix A.

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 24 of 64

RUNTIME =

(Optional)

Callback for runtime check on the corresponding word of command string COMMAND,
that is, this is one-to-one mapping to each word of command string. The mapping rule

is the same with the rule for CMD_VAR.

The callback is invoked at the time of command execution, pressing TAB and ‘?’. It
asks for present check, byword, help and runtime value range. The prototype of the
callback is icli_runtime_cb_t described as the follows.

/*

 ICLI_ASK_PRESENT : ask if the word is present or not

 ICLI_ASK_BYWORD : ask byword, and this works on non-keyword

 ICLI_ASK_HELP : ask help string

 ICLI_ASK_RANGE : ask integer range for signed or unsigned,

 this works on variables for all signed and

 unsigned integer or integet list

 ICLI_ASK_PORT_RANGE : ask port type and list for the port range,

 this works on <port_type_id>, <port_type_list>,

 <port_type>, <port_id>, <port_list>

 ICLI_ASK_CWORD : ask all possible customized words for <cword>

 use 'NULL' for the end

 ICLI_ASK_VCAP_VR : ask range for vcap_vr

*/

typedef enum {

 ICLI_ASK_PRESENT,

 ICLI_ASK_BYWORD,

 ICLI_ASK_HELP,

 ICLI_ASK_RANGE,

 ICLI_ASK_PORT_RANGE,

ICLI_ASK_CWORD,

ICLI_ASK_VCAP_VR,

} icli_runtime_ask_t;

typedef union {

 BOOL present;

 char byword[ICLI_RUNTIME_MAX_LEN + 4];

 char help[ICLI_RUNTIME_MAX_LEN + 4];

 icli_range_t range;

 icli_stack_port_range_t port_range;

 char *cword[ICLI_CWORD_MAX_CNT];

icli_ask_vcap_vr_t vcap_vr;

} icli_runtime_t;

/*

 INPUT

 session_id : session ID

 ask : what is asked at runtime

 OUTPUT

 runtime

 ICLI_ASK_PRESENT : runtime.present

 ICLI_ASK_BYWORD : runtime.byword

 ICLI_ASK_HELP : runtime.help

 ICLI_ASK_VALUE : runtime.range

 ICLI_ASK_PORT_RANGE : runtime.port_range

 ICLI_ASK_CWORD : runtime.cword

 ICLI_ASK_VCAP_VR : runtime.vcap_vr

 RETURN

 TRUE

 ICLI engine will check the value in runtime.

 ICLI_ASK_PRESENT : runtime.present == TRUE, enable the word

 runtime.present == FALSE, disable the word

 ICLI_ASK_BYWORD : use runtime.byword

 ICLI_ASK_HELP : use runtime.help

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 25 of 64

 ICLI_ASK_VALUE : use runtime.range

 ICLI_ASK_PORT_RANGE : use runtime.port_range

 ICLI_ASK_CWORD : use runtime.cword

 ICLI_ASK_VCAP_VR : use runtime.vcap_vr

 FALSE

 ICLI engine will ignore the value in runtime.

 ICLI_ASK_PRESENT : the word is present

 ICLI_ASK_BYWORD : use original one in *.icli

 ICLI_ASK_HELP : use original one in *.icli

 ICLI_ASK_VALUE : use original one in *.icli

 ICLI_ASK_PORT_RANGE : use system port range

 ICLI_ASK_CWORD : <cword> works as <word>

 ICLI_ASK_VCAP_VR : no range limit

*/

typedef BOOL (icli_runtime_cb_t)(

 IN u32 session_id,

 IN icli_runtime_ask_t ask,

 OUT icli_runtime_t *runtime

);

So, you can use the runtime check in the following cases.

1. The word in command will be enabled or disabled at run time. For example, the
corresponding component is enabled or disabled.

2. The range of value will be changed at run time. In this case, you can change the

byname and help correspondingly to show the user.

For each ask type, it may works on some specific word types only.

ICLI_ASK_PRESENT : for keyword and all variable types

ICLI_ASK_BYWORD : for all variable types, but not for keyword

ICLI_ASK_HELP : for keyword and all variable types

ICLI_ASK_VALUE : only for the variable types of <range_lsit>, <int>, <uint>,

 <word>, <kword>, <string> and <line>.
ICLI_ASK_PORT_RANGE : for <port_type_id> and <port_type_list>.

ICLI_ASK_CWORD : only for <cword>.

ICLI_ASK_VCAP_VR : only for <vcap_vr>.

An example is as follows. RSTP may be enabled or disabled at run time, so the word

“rstp” has a runtime check for it.

FUNCTION_BEGIN

static BOOL _rstp_runtime(

 IN u32 session_id,

 IN icli_runtime_ask_t ask,

 OUT icli_runtime_t *runtime

)

{

 switch (ask) {

 case ICLI_ASK_PRESENT:

 if (rstp_enable()) {

 runtime.present = TRUE;

 } else {

 runtime.present = FALSE;

 }

 return TRUE;

 default:

 break;

 }

 return FALSE;

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 26 of 64

}

FUNCTION_END

CMD_BEGIN

COMMAND = stp mode [mstp | rstp | mrstp]

...

RUNTIME =

RUNTIME =

RUNTIME =

RUNTIME = _rstp_runtime

RUNTIME =

...

CMD_END

By using ICLI_ASK_PRESENT on the first keyword of a command, this command can be

enabled+visiable and disabled_invisible at runtime. The following example tells that

the command is enabled and visible when STP mode is enabled. Otherwise, the
command is hidden, that is disabled and invisible.

FUNCTION_BEGIN

static BOOL _stp_runtime(

 IN u32 session_id,

 IN icli_runtime_ask_t ask,

 OUT icli_runtime_t *runtime

)

{

 switch (ask) {

 case ICLI_ASK_PRESENT:

 if (stp_enable()) {

 runtime.present = TRUE;

 } else {

 runtime.present = FALSE;

 }

 return TRUE;

 default:

 break;

 }

 return FALSE;

}

FUNCTION_END

CMD_BEGIN

COMMAND = stp mode [mstp | rstp | mrstp]

...

RUNTIME = _stp_runtime

RUNTIME =

RUNTIME =

RUNTIME =

RUNTIME =

...

CMD_END

BYWORD =

(Optional)

Alternative word represents the corresponding word of command string when the user

presses TAB key or ‘?’. Generally, the word displayed when pressing TAB or ‘?’ is the
word in COMMAND. If the corresponding BYWORD is defined, then this byword will
be displayed, but not the word in COMMAND.

On the other hand, the BYWORD works on variable only, but not on keyword.

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 27 of 64

Remember that the byword also can be got at run time through RUNTIME.

An example is as follows.

Example 1 is without byword.

COMMAND = temperature set <0-100>

...

BYWORD =

BYWORD =

BYWORD =

...

CMD_END

Then, the user inputs as follows.

switch> temperature set ?

<0-100>

Example 2 is with a byword.

COMMAND = temperature set <0-100>

...

BYWORD =

BYWORD =

BYWORD = <CelsiusDegree>

...

CMD_END

Then, the user inputs as follows.

switch> temperature set ?

<CelsiusDegree>

HELP =

(Optional)

Help string for the corresponding word of command string.

This is displayed when pressing ‘?’ to get the full descriptions for next possible
command words.

If the help string is long, you may use ‘\’ to concatenate lines.

Remember that the help also can be got at run time through RUNTIME.

An example is as follows.

COMMAND = temperature { get | set <0-100> }

...

BYWORD =

BYWORD =

BYWORD =

BYWORD = <CelsiusDegree>

HELP =

HELP = get the current temperature in Celsius degree

HELP =

HELP = the range of degree is from 0 to 100

...

CMD_END

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 28 of 64

Then, the user inputs as follows.

switch> temperature ?

get get the current temperature in Celsius degree

set

switch> temperature set ?

<CelsiusDegree> the range of degree is from 0 to 100

“set” does not have help string to display because the tag value of its corresponding
“HELP” is empty. On the other hand, the BYWORD of “set” does not work because
“set” is a keyword, not a variable.

MODE_VAR =

(Optional)

C variable for the variable in the mode entry command. This does not need to one-to-
one mapping as CMD_VAR to COMMAND but ICLI engine will help to search the
variable in the mode entry command and to map to it. The C variable will be auto-
declared in command execution function of generated C file according to the variable
type in the mode entry command.

MODE_VAR = vid

The example is in Section 0 and the mode entry command is “interface vlan <1-

4094>”. ICLI engine will automatically find vid is for <1-4094>.

Therefore, we can get the VLAN ID through the C variable vid, and, in this example,

use vid to set ip address on the correct.

VARIABLE_BEGIN

VARIABLE_END

(Optional)

Marks the beginning and end of variable sub-segment.

The sub-segment declares the variables that will be used in the following Code sub-

segment and you may also initialize variables of CMD_VAR and MODE_VAR here.

Please refer the example in Section 0.

CODE_BEGIN

CODE_END

(Optional)

Marks the beginning and end of code sub-segment.

This sub-segment contains the code body that implements the function of the

command.

There is a C variable, session_id, which can be used in this segment. session_id is

an input parameter of command execution function and identifies the current ICLI
session.

On the other hand, you need session_id for the use of APIs exported in icli_api.h

because it always is the first input parameter of APIs in icli_api.h. For example,

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 29 of 64

icli_session_printf(session_id, “test”);

NO_FORM_DOC_CMD_DESC

NO_FORM_DOC_CMD_DEFAULT

NO_FORM_DOC_CMD_USAGE

NO_FORM_DOC_CMD_EXAMPLE

NO_FORM_VARIABLE_BEGIN

NO_FORM_VARIABLE_END

NO_FORM_CODE_BEGIN

NO_FORM_CODE_END

(Optional)

Their usages are the same with previous DOC_CMD_DESC, DOC_CMD_DEFAULT,
DOC_CMD_USAGE, DOC_CMD_EXAMPLE, VARIABLE_BEGIN, VARIABLE_END,

CODE_BEGIN and CODE_END. But, these tags defines the HTML descriptions and
the code body for no form command.

If and only if there are codes in Code sub-segment, NO_FORM_CODE_BEGIN and
NO_FORM_CODE_END, the no form command will be auto-generated by ICLI engine.

For the example below, “no arp inspection” will be auto-generated by ICLI engine

and the duplicate words arp inspection will use the same command properties

defined previously.

CMD_BEGIN

COMMAND = arp inspection

...

HELP = ARP configuration

HELP = Arp Inspection configuration

...

VARIABLE_BEGIN

 ...

VARIABLE_END

CODE_BEGIN

 /* enable ARP inspection */

 ...

CODE_END

NO_FORM_CODE_BEGIN

 /* disable ARP inspection */

 ...

NO_FORM_CODE_END

CMD_END

DEFAULT_FORM_DOC_CMD_DESC

DEFAULT_FORM_DOC_CMD_DEFAULT

DEFAULT_FORM_DOC_CMD_USAGE

DEFAULT_FORM_DOC_CMD_EXAMPLE

DEFAULT_FORM_VARIABLE_BEGIN

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 30 of 64

DEFAULT_FORM_VARIABLE_END

DEFAULT_FORM_CODE_BEGIN

DEFAULT_FORM_CODE_END

(Optional)

Their usages are the same with previous DOC_CMD_DESC, DOC_CMD_DEFAULT,
DOC_CMD_USAGE, DOC_CMD_EXAMPLE, VARIABLE_BEGIN, VARIABLE_END,
CODE_BEGIN and CODE_END. But, these tags defines the HTML descriptions and
the code body for default form command.

If and only if there are codes in Code sub-segment, DEFAULT_FORM_CODE_BEGIN

and DEFAULT_FORM_CODE_END, the default form command will be auto-generated
by ICLI engine.

For the example below, “default arp inspection” will be auto-generated by ICLI

engine and the duplicate words arp inspection will use the same command

properties defined previously.

CMD_BEGIN

COMMAND = arp inspection

...

HELP = ARP configuration

HELP = Arp Inspection configuration

...

VARIABLE_BEGIN

 ...

VARIABLE_END

CODE_BEGIN

 /* enable ARP inspection */

 ...

CODE_END

DEFAULT_FORM_CODE_BEGIN

 /* reset ARP inspection to be default*/

 ...

DEFAULT_FORM_CODE_END

CMD_END

When deploying no/default form command, one thing must be sured is that the command

syntaxes of normal command and no/default form command should be the totally same.

For example, the normal command of ARP inspection is “arp inspection” and its no form

command is “no arp inspection”. Except “no”, they have the same syntax so it can use no

form.

However, the normal command of IGMP is “ip igmp {V1|V2|V3}” and its no form command is

“no ip igmp”. The no form command does not have the syntax {V1|V2|V3}, their syntaxes

are different so the no form can not be applied.

3.2.5 Defining Constant String

The constant string can be defined everywhere, but except the areas inside Include Segment,
Function Segment, Variable Intial Sub-segment and Code Sub-segment. The reason is these
areas are pasted exactly to generated C and H files so ICLI engine does not take care of any
thing in these areas.

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 31 of 64

In other words, if there is a TAG-VALUE defined outside these areas and the tag is not
reserved by ICLI engine, then the TAG-VALUE will be took as a constant string definition no
matter it is upper or lower case. When it is referred, the prefix “##” is needed to indicate that
the following string is a name of constant string.

This feature make the string easily reused, for example, HELP string.

For example,

SHOW_HELP_str = show system information

COMMAND = show ip interface

...

HELP = ##SHOW_HELP_str

HELP =

HELP =

...

CMD_END

COMMAND = show mac address

...

HELP = ##SHOW_HELP_str

HELP =

HELP =

...

CMD_END

On the other hand, no matter where the constant string is defined in the script, it can be used
in whole scope in the script.

For example,

COMMAND = show ip interface

...

HELP = ##SHOW_HELP_str

HELP =

HELP =

...

CMD_END

SHOW_HELP_str = show system information

COMMAND = show mac address

...

HELP = ##SHOW_HELP_str

HELP =

HELP =

...

CMD_END

For example,

COMMAND = show ip interface

...

HELP = ##SHOW_HELP_str

HELP =

HELP =

...

CMD_END

COMMAND = show mac address

...

HELP = ##SHOW_HELP_str

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 32 of 64

HELP =

HELP =

...

CMD_END

SHOW_HELP_str = show system information

In the previous two examples, SHOW_HELP_str is defined at the middle and last line, but it still

can be used in the commands.

3.2.6 An Example

This example uses ‘!’ for line comment and is described as follows.

! Begin of Command segment

CMD_BEGIN

! command description

DOC_CMD_DESC = this command is used to set management ip interface.

! default value

DOC_CMD_DEFAULT = the default IP is 192.168.0.1/255.255.255.0

! usage description

DOC_CMD_USAGE = when the default IP does not work on your network,\

 you can use this command to modify the IP for your network.

! example

DOC_CMD_EXAMPLE = if you wants to set ip and netmask to be 10.1.1.1/255.0.0.0,\

 you can execute the command as follows.

DOC_CMD_EXAMPLE = Switch# ip address 10.1.1.1 255.0.0.0

! Command string

COMMAND = ip address <ipv4_ucast> <ipv4_netmask>

! Privilege level of the command

PRIVILEGE = ICLI_PRIVILEGE_8

! Command property

PROPERTY = ICLI_CMD_PROP_ENABLE | ICLI_CMD_PROP_VISIBLE

! C variable for “ip”

CMD_VAR =

! C variable for “address”

CMD_VAR =

! C variable for “<ipv4_ucast>”

CMD_VAR = ip

! C variable for “<ipv4_netmask>”

CMD_VAR = netmask

! Help string for “ip”

HELP = ip interface

! Help string for “address”

HELP = ip address set

! Help string for “<ipv4_ucast>”

HELP = unicast IP address

! Help string for “<ipv4_netmask>”

HELP = netmask

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 33 of 64

! The command works at interface VLAN mode.

CMD_MODE = ICLI_CMD_MODE_INTERFACE_VLAN

! C variable for “<1-4094>”

MODE_VAR = vid

! Variable declaration and initialization

VARIABLE_BEGIN

 char ip_str[20];

 char netmask_str[20];

VARIABLE_END

! Command implementation body

CODE_BEGIN

 //translate IP and netmask to string format

 icli_ipv4_to_str(ip, ip_str);

 icli_ipv4_to_str(netmask, netmask_str);

 ICLI_PRINTF(“Set %s/%s on VLAN %d successfully\n”,

 ip_str, netmask_str, vid);

CODE_END

! End of Command segment

CMD_END

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 34 of 64

4 Make on eCos

4.1 Make File

To automatically generate and register ICLI commands, you can simply copy the following two
lines into your component make file, said, module_x.in.

--

Built-in ICLI

$(eval $(call add_icli,$(foreach m, x_0 x_1,$(DIR_x_script)/$(m).icli)))

--

where x_0 and x_1 are your ICLI script files, x_0.icli and x_1.icli.

DIR_x_script is the directory where x_0.icli and x_1.icli are stored.

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 35 of 64

A Appendix: Variable Types

This appendix lists all variable types supported by ICLI. “C Type” in the description means the
data type will be declared by ICLI in generated C file. So that you can access the variable

correctly in C. “Description” describes the legal syntax of the variable type. “Legal Input”
shows the examples legal to the variable type. “Illegal Input” shows the examples illegal to
the variable type.

A.1 <a~b>

C Type

If with negative, icli_signed_range_t *

if without negative, icli_unsigned_range_t *

Description

A list of range in the range of a and b, where a < b, the max number of range blocks

in the list is 8. An example is <-9~90>.

And, a and b can be digial numbers or constant. If it is a constant then it needs to be
enclosed by single quote. An example is <1~‘ACL_MAX_CNT’>.

Legal Input

-5

0,0,0,0

-5--3,-1-0,6,10-90

1,3,4,6,7,8,5,2

Illegal Input

-30

-5--3,-1-0,6,10-99

-10,2,3,4,5,6,7,8,9

A.2 <a-b,c,d-e>

C Type

u32

Description

Integer in a range. The range is separated by ‘,’ and each block between ‘,’ can be a
single decimal interger or a range value. The range value uses ‘-‘ to indicate the range.
In this case, a, b, c, d and e are decimal integers and a < b and d < e. The maximum
number of range blocks is 8.

Assume, “-5--3,20,-1-0,6,15-119,-4” has 6 range blocks.

So the legal input value should be either (>= -5 && <= -3) or (>= -1 && <=0) or

(==6) or (>=15 && <= 119).

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 36 of 64

Except to be digital numbers, a and b can also be constants. If it is a constant then it
needs to be enclosed by single quote. An example is <1-‘ACL_MAX_CNT’>, or
<’MIN_NUM’-‘MAX_NUM’>

Legal Input

-4

0

6

17

118

Illegal Input

-6

-2

3

11

120

A.3 <clock_id>

C Type

icli_clock_id_t

Description

The ID is an array of hex value in 8 bytes.

Legal Input

00:01:02:03:04:05:06:07

0-1-2-3-4b-5-6-7

0-001-2-3:4:5:006:7a

Illegal Input

0:1:2:3:4:5:6:

0-111-2-3-4-5-6-7

0-1-2-3:4:5-6.7

A.4 <cword>

C Type

char *

Description

Constant words defined in runtime

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 37 of 64

Legal Input

Words defined in runtime

Illegal Input

words not defined

A.5 <date>

C Type

icli_date_t

Description

Date in yyyy/mm/dd, yyyy=1970-2037, mm=1-12, dd=1-31

Legal Input

1970/09/25

2011/05/26

2037/12/31

Illegal Input

1969/09/25

2011/050/26

203a/12/31

A.6 <domain_name>

C Type

char *

Description

Domain name compliant with RFC1123.

<domain> ::= <subdomain>

<subdomain> ::= <label> | <subdomain> "." <label>

<label> ::= <let-dig> [[<ldh-str>] <let-dig>]

<ldh-str> ::= <let-dig-hyp> | <let-dig-hyp> <ldh-str>

<let-dig-hyp> ::= <let-dig> | "-"

<let-dig> ::= <letter> | <digit>

<letter> ::= A-Za-z

<digit> ::= 0-9

<domain_namem> and <domain_namem-n> are supported, where m is the
maximum length of the word and n is the minimum length.

Legal Input

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 38 of 64

abc.1.com

1.2.3.4

1.2-3

Illegal Input

abc.1.

1.2.3.4.

1.2-3-

A.7 <dpi>

C Type

u8

Description

Drop Precedence Level. If the platform is Juguar1, the range is 0 to 3.

Otherwise, the range is 0 to 1.

Legal Input

0

1

2 (for Juguar1)

3 (for Juguar1)

Illegal Input

-0

-1

4

5

A.8 <dscp>

C Type

u8

Description

It provides specific DSCP PHBs and the valid PHbs are be, af11, af12, af13, af21, af22,
af23, af31, af32, af33, af41, af42, af43, cs1, cs2, cs3, cs4, cs5, cs6, cs7, ef, va.

Legal Input

b

be

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 39 of 64

af13

cs6

e

ef

Illegal Input

be1

af1

c

cs

vb

A.9 <dword>

C Type

char *

Description

A single word with all characters in numeric letter, 0-9.

<dwordm> and <dwordm-n> are supported, where m is the maximum length of the
word and n is the minimum length.

Legal Input

0203

1235

10000

Illegal Input

f12345

-123

_iso34

A.10 <fword>

C Type

char *

Description

A single word with a floating point.

<fwordm> and <fwordm-n> are supported, where m is the maximum length of the
word and n is the minimum length.

Legal Input

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 40 of 64

0.203

12.35

1000.0

Illegal Input

f2345

-123

100.00.0

A.11 <hexval>

C Type

icli_hexval_t

Description

A hex value begins with ‘0x’ or ‘0X’ and its default maximum length is 128 bytes.

<hexvalm> and <hexvalm-n> are supported, where m is the maximum length of the

value and n is the minimum length.

Legal Input

0x012345678

0X567890abcdfe

Illegal Input

12345678

0X567890k

A.12 <hhmm>

C Type

icli_time_t

Description

Time in hh:mm, hh=0-23, mm=0-59

Legal Input

00:00

05:05

23:15

Illegal Input

:00:00

05:05:

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 41 of 64

23::15

24:15:59

A.13 <host_name>

C Type

char *

Description

<host_name> ::= <let-dig> [[<ldh-str>] <let-dig>]

<ldh-str> ::= <let-dig-hyp> | <let-dig-hyp> <ldh-str>

<let-dig-hyp> ::= <let-dig> | "-"

<let-dig> ::= <letter> | <digit>

<letter> ::= A-Za-z

<digit> ::= 0-9

The default maximum length is 63 bytes.

<host_namem> and <host_namem-n> are supported, where m is the maximum
length of the word and n is the minimum length.

Legal Input

Abc0998

9

12-34

67-gh

Illegal Input

8@

2.4

6-8.com

A.14 <int>

C Type

i32

Description

32-bit signed integer, the range is -2147483648 to 2147483647.

This has RUNTIME.range feature.

Legal Input

-100

-0

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 42 of 64

1234567890

Illegal Input

-2147483649

2147abc

21474836470

A.15 <int16>

C Type

i16

Description

16-bit signed integer, the range is -32768 to 32767.

Legal Input

-100

-0

23456

Illegal Input

-2147449

7abc

14748364

A.16 <int8>

C Type

i8

Description

8-bit signed integer, the range is -128 to 127.

Legal Input

-100

-0

123

Illegal Input

-83649

21bc

128

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 43 of 64

A.17 <ipv4_abc>

C Type

vtss_ip_t

Description

IPv4 IP address in the format of ddd.ddd.ddd.ddd where ‘d’ is a decimal digit and the
address must be in class A, B or C. If it is in class D or E, then it is invalid.

Legal Input

1.0.0.0

10.254.255.0

223.255.255.255

Illegal Input

224.0.0.0

240.255.255.254

255.0.0.1

A.18 <ipv4_addr>

C Type

vtss_ip_t

Description

Any IPv4 IP address in the format of ddd.ddd.ddd.ddd where ‘d’ is a decimal digit and
the range of each ddd is 0 – 255.

Legal Input

0.0.0.0

1.2.3.4

255.255.255.255

Illegal Input

0.0.0

0.0.0.256

1.2.3:4

A.19 <ipv4_mcast>

C Type

vtss_ip_t

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 44 of 64

Description

Multicast IPv4 IP address in the format of ddd.ddd.ddd.ddd where ‘d’ is a decimal digit.
It is in the range of 224.0.0.0 to 239.255.255.255.

Legal Input

224.0.0.0

230.254.255.0

239.255.255.255

Illegal Input

0.0.1.2

223.255.255.254

240.0.0.1

A.20 <ipv4_netmask>

C Type

vtss_ip_t

Description

IPv4 Netmask in the format of ddd.ddd.ddd.ddd where ‘d’ is a decimal digit.

Legal Input

0.0.0.0

255.255.255.0

255.252.0.0

Illegal Input

0.0.255.255

255.250.255.0

255.252.0.1

A.21 <ipv4_nmcast>

C Type

vtss_ip_t

Description

Non-multicast IPv4 IP address in the format of ddd.ddd.ddd.ddd where ‘d’ is a decimal

digit. And, the IP address is the address not in the range of 224.0.0.0 to
239.255.255.255.

Legal Input

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 45 of 64

0.0.1.255

223.255.255.254

240.0.0.0

Illegal Input

224.0.0.0

235.0.1.255

239.255.255.255

A.22 <ipv4_prefix>

C Type

u32

Description

IPv4 prefix length, in the format of /n, when ‘n’ is in the range of 0 and 32.

Legal Input

/0

/32

/0010

Illegal Input

/-1

/33

/00101

A.23 <ipv4_subnet>

C Type

icli_ipv4_subnet_t

Description

IPv4 Subnet address in 2 formats, where ‘d’ is a decimal digit.

IP/netmask: ddd.ddd.ddd.ddd/ddd.ddd.ddd.ddd

IP/prefix-length: ddd.ddd.ddd.ddd/dd

Where IP is unicast IP address and prefix length dd is from 0 to 32.

Legal Input

10.1.1.1/255.0.0.0

10.1.1.1/0

10.1.1.1/32

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 46 of 64

223.255.255.254/8

Illegal Input

10.1.1.1/255.0.1.0

10.1.1.1/-1

10.1.1.1/33

224.1.1.1/8

A.24 <ipv4_ucast>

C Type

vtss_ip_t

Description

Unicast IPv4 IP address in the format of ddd.ddd.ddd.ddd where ‘d’ is a decimal digit.

The following 3 cases are illegal:

1. In the range of 224.0.0.0 to 239.255.255.255,

2. ddd.ddd.ddd.0,

3. ddd.ddd.ddd.255.

Legal Input

0.0.1.2

223.255.255.254

240.0.0.1

Illegal Input

0.0.1.255

224.0.0.1

240.0.0.0

A.25 <ipv6_addr>

C Type

vtss_ipv6_t

Description

Any IPv6 address, in the format of hhhh:hhhh:hhhh:hhhh:hhhh:hhhh:hhhh:hhhh,
where ‘h’ is a hex digit. "::" can be used to skip some hex digits, but it can happen

once only.

Legal Input

::

::1

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 47 of 64

0:0:0:0:0:0:0:0

1234::5678:90ab

1234::

::5678:90ab

Illegal Input

:

:::1

0:0:0:0:0:0:0:0:0

1234::5678::90ab

1234:::5678:90ab

1234::5678:90ab:

A.26 <ipv6_mcast>

C Type

vtss_ipv6_t

Description

Multicast IPv6 address, in the format of
hhhh:hhhh:hhhh:hhhh:hhhh:hhhh:hhhh:hhhh, where ‘h’ is a hex digit. "::" can be
used to skip some hex digits, but it can happen once only.

But, the first hh must be 0xFF.

Legal Input

FF00::

FF55::1

FF34::cd:82

FF81:5678::ab

Illegal Input

::

FF0::

3F55::1

1234::cd:90ab

::5678:90ab

A.27 <ipv6_netmask>

C Type

vtss_ipv6_t

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 48 of 64

Description

Any IPv6 netmask, in the format of hhhh:hhhh:hhhh:hhhh:hhhh:hhhh:hhhh:hhhh,
where ‘h’ is a hex digit. "::" can be used to skip some hex digits, but it can happen
once only.

Legal Input

FF00::

FFF0::

FFFF:FF00::

FFFF:FFFF:FC00::

Illegal Input

::FF00

FF10::

FFFF::FF00::

:FFFF:FFFF:FC00::

A.28 <ipv6_prefix>

C Type

u32

Description

IPv6 prefix length, in the format of /n, when ‘n’ is in the range of 0 and 128.

Legal Input

/0

/128

/0000101

Illegal Input

/-1

/129

/0001011

A.29 <ipv6_subnet>

C Type

icli_ipv6_subnet_t

Description

IPv6 Subnet address, IP/Netmask or IP/mask-bits

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 49 of 64

Legal Input

::/FF00::

::1/FFFF:FF00::

0:0:0:0:0:0:0:0/33

1234::5678:90ab/1

1234::/128

::5678:90ab/F000::

Illegal Input

::/FF0::

::1/FFFF:FF0::

0:0:0:0:0:0:0:0/133

1234::5678:90ab/200

1234::/228

::5678:90ab/F000:F:

A.30 <ipv6_ucast>

C Type

vtss_ipv6_t

Description

Unicast IPv6 address, in the format of hhhh:hhhh:hhhh:hhhh:hhhh:hhhh:hhhh:hhhh,
where ‘h’ is a hex digit. "::" can be used to skip some hex digits, but it can happen

once only.

But, the first hh must NOT be 0xFF.

Legal Input

::

FF0::

3F55::1

1234::cd:90ab

::5678:90ab

Illegal Input

FF00::

FF55::1

FF34::cd:82

FF81:5678::ab

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 50 of 64

A.31 <kword>

C Type

char *

Description

A single word, but must begin with an alphabet, A-Z or a-z, not a numeric letter.

<kwordm> and <kwordm-n> are supported, where m is the maximum length of the

word and n is the minimum length.

Legal Input

ab2c3

f123

iso3456

Illegal Input

12345

f 123

_iso34

A.32 <line>

C Type

char *

Description

Any string that may contains several words with any characters separated by spaces.

<linem> and <linem-n> are supported, where m is the maximum length of the word
and n is the minimum length.

Legal Input

This is a book

“This is a book”

123 45

“123 45”

12345

“12345”

a 123

“a 123”

Illegal Input

<enter>

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 51 of 64

A.33 <mac_addr>

C Type

vtss_mac_t

Description

Any Ethernet MAC address. hh:hh:hh:hh:hh:hh where ‘h’ is a hex digit.

Legal Input

00:11:2a:bc:de:f9

 0:1:0:46:5:3a

Illegal Input

00:11:2a:bc

 0.1.0.46.5.3a

A.34 <mac_mcast>

C Type

vtss_mac_t

Description

Multicast MAC address

hh:hh:hh:hh:hh:hh where hh & 0x01 == 0x01.

Legal Input

02:11:2a:bc:de:f9

0:1:0:46:5:3a

Illegal Input

03:11:2a:bc:45:fd

b:1:0:46:5:3a

A.35 <mac_ucast>

C Type

vtss_mac_t

Description

Unicast MAC address

hh:hh:hh:hh:hh:hh where hh & 0x01 != 0x01.

Legal Input

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 52 of 64

02:11:2a:bc:de:f9

0:1:0:46:5:3a

Illegal Input

03:11:2a:bc:45:fd

b:1:0:46:5:3a

A.36 <oui>

C Type

icli_oui_t

Description

Organizationally Unique Identifier (OUI) is a 24-bit number that is the first three bytes
of MAC address. And, this should be unicast.

Legal Input

00-01-02

14:05:07

ba:09:fe

Illegal Input

01-01-02

14:05:07:

Ba::fe

A.37 <pcp>

C Type

icli_unsigned_range_t *

Description

Priority Code Point.

The valid inputs are specific (0, 1, 2, 3, 4, 5, 6, 7) or range (0-1, 2-3, 4-5, 6-7, 0-3,
4-7) or any(0-7)

Legal Input

5

2-3

6-7

0-7

Illegal Input

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 53 of 64

8

2-4

6-8

5-7

A.38 <port_type_id>

C Type

icli_switch_port_range_t

Description

The format is “port_type switch_id/port_id”.

Legal Input

Gi 1/1

Fast 1/15

10gi 2/23

Illegal Input

gi 1/0

gi1/1,2

gi 1/2-5

tengi 2/23

A.39 <port_type_list>

C Type

icli_stack_port_range_t *

Description

The format is “port_type switch_id/port_list”.

Legal Input

gi 2/13

gi 2/13,13 10gi 1/1

fast 1/3-6,9,7 gi 1/5

2.5G 1/5 fast 1/7 gi 1/3

5G 1/4,6;2/9,17-23 gi 1/1,3,5 fast 1/2,4-8;3/5,7

Illegal Input

gi 0/25

fast 2/13,

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 54 of 64

tengi 1,2/

gi 1,2,3/1,3-6,2

tengi 1/4,6,2;2/9,17-23

A.40 <range_list>

C Type

icli_range_t *

Description

A list of range, the max number of range blocks in the list is 8. The input allows
incremental only, not decremental and not equal.

This has RUNTIME.range feature.

Legal Input

-5

-5--3,-1-0,6,10-99

1,2,3,4,5,6,7,8

Illegal Input

-5--30

-5--3,-7,6-10

1,1,1

1,2,3,4,5,6,7,8,9

A.41 <string>

C Type

char *

Description

A string may contain several words separated by spaces, must enclosed in double-
quote “”.

<stringm> and <stringm-n> are supported, where m is the maximum length of the
word and n is the minimum length.

Legal Input

“123 45”

“12345”

“a 123”

Illegal Input

“123 45

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 55 of 64

123 45”

123 45

A.42 <switch_id>

C Type

u32

Description

A single switch ID that will be checked according to the current switch configuration.

Assume currently there are switch 1,3,9.

Legal Input

1

3

9

Illegal Input

0

2

8

A.43 <switch_list>

C Type

icli_unsigned_range_t

Description

A list of switch IDs that will be checked according to the current switch configuration.

Assume currently there are switch 1,2,3,5,8,9.

Legal Input

2

2-3,9,8

1-3,5,5,8-9

Illegal Input

4

2-5,8-9

1-3,5-9

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 56 of 64

A.44 <time>

C Type

icli_time_t

Description

Time in hh:mm:ss, hh=0-23, mm=0-59, ss=0-59

Legal Input

00:00:00

05:05:05

23:15:59

Illegal Input

:00:00

05:0a:05

23:15:59:

24:15:59

A.45 <uint>

C Type

u32

Description

32-bit unsigned integer, the range is 0 to 4294967295.

This has RUNTIME.range feature.

Legal Input

0

100

4294967295

Illegal Input

-0

-1

10c

4294967296

A.46 <uint16>

C Type

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 57 of 64

u16

Description

16-bit unsigned integer, the range is 0 to 65535.

Legal Input

0

100

29496

Illegal Input

-0

-1

10c

429496

A.47 <uint8>

C Type

u8

Description

8-bit unsigned integer, the range is 0 to 255.

Legal Input

0

100

254

Illegal Input

-0

-1

10c

294

A.48 <url>

C Type

char *

Description

RFC-3986

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 58 of 64

<protocol>://[<username>[:<password>]@]<host>[:<port>][/<path>]

Requirements:

<protocol>: The scheme of URI. The input string allows the lowercase letters only and
its maximum length is 31. It should be aware of tftp/ftp/http/https/file.

<username>: (Optional) User information. The maximum length is 63.

<password>: (Optional) User information. The maximum length is 63.

<host>: It is a domain name or an IPv4 address. The maximum length is 63.

<port>: (Optional) port number.

<path>: If the path is presented, it must separated by forward slash(/). The
maximum length is 255.

<urlm> and <urlm-n> are supported, where m is the maximum length of the word

and n is the minimum length.

Legal Input

http://user@abc.com

tftp://1.2.3.4:123

ftp://vitesse.com:123/path

https://user:passwd@host.com.tw:123/path

file:///folder/path

Illegal Input

httpx://user@abc.com

tftp://1.2.3.4:123456

ftp://vitesse.com:123path

https://user:passwd@host.com.tw:123/path//

A.49 <vlan_id>

C Type

u32

Description

VLAN ID, an unsigned integer in the range of min_vlan_id to max_vlan_id, where
min_vlan_id and max_vlan_id is configurable at run time.

By default, the valid range is 1-4095.

Legal Input

1

9

24

4094

Illegal Input

http://user@abc.com/
ftp://vitesse.com:123/path
https://user:passwd@host.com.tw:123/path
http://user@abc.com/
ftp://vitesse.com:123path

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 59 of 64

-5

0

4095

10000

A.50 <vlan_list>

C Type

icli_unsigned_range_t *

Description

VLAN ID List, a list of range blocks that must be from min_vlan_id to max_vlan_id.

By default, the valid range is 1-4095.

Legal Input

1100

1,1,200,300,55

1,20-30,90-2300

50,109,1010-4000

Illegal Input

-1100

1,200,30

1,20-30,9-2300

50,19,1010-4000

A.51 <vword>

C Type

char *

Description

A single word that allows 0-9a-zA-Z, but it does not allow all in 0-9 only.

<vwordm> and <vwordm-n> are supported, where m is the maximum length of the
word and n is the minimum length.

Legal Input

A123

123a

avcd

Illegal Input

123

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 60 of 64

-123

abcd+def

A.52 <word>

C Type

char *

Description

A single word without space inside.

<wordm> and <wordm-n> are supported, where m is the maximum length of the
word and n is the minimum length.

Legal Input

12345

ab2c3

_isoi34*(

Illegal Input

123 45

ab 2c3

_iso i34*(

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 61 of 64

B Appendix: FAQ

B.1 Duplicate word

Because the ICLI parsing thinks the design is from left to right, the limitation on ICLI engine
parsing is it does not allow the same words that overlap in mandatory{} or optional().

For example (1), 2 commands,

 snmp client version <uint>

 snmp { server | client } address <ipv4_ucast>

Then, the keyword ‘client’ is overlapped illegally because ‘client’ is in mandatory{} in the

second command.

The example (2), 2 commands,

 snmp client version <uint>

 snmp [client] address <ipv4_ucast>

Then, the keyword ‘client’ is still overlapped illegally because ‘client’ is in optional[] in the

second command.

The solution is as follows.

Example (1) is re-designed to the following 2 commands.

 snmp client { version <uint> | address <ipv4_ucast> }

 snmp server address <ipv4_ucast>

Example (2) is re-designed to the following 2 commands.

 snmp client { version <uint> | address <ipv4_ucast> }

 snmp address <ipv4_ucast>

In other words, the concept is to use the same flat prefix as most as possible. “snmp client”

is the same flat prefix in the examples.

B.2 Multiple Optional Begin

If the command has the following designs, then the keyword ‘x’ is multiple optional begin.

 a [[x]]

or

 a [b | [x]]

 To solve this problem, a keyword is added before [x]. For example,

 a [k [x]]

or

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 62 of 64

a [b | k [x]]

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 63 of 64

C Appendix: Short-cut keys

Function Shortcut key Description

Line scroll Yes

If the length of command exceeds
the width of windows, then “$” will
be used to scroll the command
input, but not display to the next
line.

Cursor

move

LEFT Back one character to left.

RIGHT Forward one character to right.

HOME

Go to the beginning of the line.

Ctrl-a

END

Go to the end of the line.

Ctrl-e

Delete

Ctrl-n The current line.

DEL

A character at the cursor.

Ctrl-d

Backspace

A character to the left of the cursor.

Ctrl-h

Ctrl-u
All characters from the cursor to the
beginning of the line.

Ctrl-x

Ctrl-k
All characters from the cursor to the
end of the line.

Ctrl-w
A word from the cursor to the
beginning of the word.

Page More

Spacebar

Next page.

All other keys

Enter Next line.

Ctrl-c

Exit from more output.

q

 ICLI Command Generation Guide
 Application Note

Revision 2.9
Oct 2014 Confidential Page 64 of 64

g Go to the last line.

History

UP

Previous line.

Ctrl-p

DOWN Next line.

Context-
Sensitive
Help

TAB

 Unique : complete the token.

 Ambiguous : list all possible
tokens.

 Behind prompt : list all possible
tokens.

?

The first ‘?’ lists all possible tokens
with help descriptions.

The second immediate ‘?’ lists all
possible full commands.

Ctrl-q Display full command syntax.

Command

Mode
Ctrl-z Go back to Exec mode directly.

